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Abstract

This thesis aims mainly to study the relation between reduction of

order method for multiplicative and additive homogeneous difference

equations of degree one and Lie symmetry method. We study the dy-

namics of solutions of homogeneous difference equations and consider

the reduction of order of such equations. Then we study qualitative

behavior of solutions of the reduced equation and its connection to

the solution of the original equation.

Keywords: Difference equations; Multiplicative homogeneous dif-

ference equations of degree one; Additive homogeneous difference equa-

tions of degree one; Lie symmetry; Reduced equation; Local stability;

Global stability.
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INTRODUCTION

Difference equations constitute an area of considerable interest. There

has been some renewed interest in solvable difference equations. A frequent

situation is that a difference equation is transformed into a linear first order

one, which is solvable. Moreover, an analysis shows that many systems are

also essentially reduced to an equation. There are methods that reduce the

order of the difference equation as Lie symmetry method.

Meada (1987) has shown that difference equations of order one can be

solved by Lie’s method, and he showed that the linearized symmetry condi-

tion (LSC) for such difference equation leads to a set of functional equations.

Later, Quisple and Sahdevan (1993) were interested in this method and they

extended Meada’s idea to a higher order difference equations by using a Lau-

rent series expansion about a fixed point. Levi et al. (1997) expanded the

linearized symmetry condition as a series in powers of xn and looked for

symmetries that are more general than point symmetries but the expression

derived by them was complicated. Hydon (2000) introduced a method for
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obtaining the Lie symmetries and used it to reduce the order of the ordinary

difference equations and to find the solution. He applied this method to sec-

ond order difference equations. Walaa Yaseen (2018) used Lie symmetries

to find the general solution to difference equations of higher orders as order

four.

H. Sedaghat focus on reducing the order of a special type of differ-

ence equations which are homogeneous difference equations of degree one.

H. Sedaghat (2007) showed that every second order homogeneous difference

equation of degree one has a semiconjugte factorizations. And as a result, all

second order homogeneous difference equation of degree one can be reduced

to a system of two first order difference equations.

H. Sedaghat (2009) generlized his results to homogeneous difference

equation of degree one of order k + 1, and showed that every homogeneous

difference equation of degree one of order k + 1 can be reduced to a system

of two equtions of orders k and one respectively.

In this Thesis, we study the symmetry analysis for ordinary difference

equations. Then by using Lie symmetries, we investigate the exact solutions

for first and second difference equations. And we study the reduction of order

method of homogeneous difference equation of degree one. Then we use it to

find the general solution for some homogeneous difference equation of degree

one.

Also, we find a relation between Lie symmetry method and the

reduction of order method for homogeneous difference equation of degree

one. Moreover, we study the qualitative behaviour for the original and its

reduced equation.

This Thesis is organized as follows, in chapter two, we introduce
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some basic concepts and the general solution for first order linear difference

equations. In chapter three, we investigate symmetries in mathematics to

introduce Lie symmetry method for solving first and second order difference

equations. And we generlize the method for higher order difference equations.

In chapter four, we investigate order reduction theorem for homoge-

neous difference equations of degree one. In chapter five, we solve a homo-

geneous difference equation of degree one using Lie symmetry to find the

relation between Lie symmetry and reduction of order method. Finally, we

use our results to solve a special case of the difference equation

xn+1 =
xnxn−k

axn−k + bxn−l
,

and we study the qualitative behaviour of the original and its reduced equa-

tion.
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PRELIMINARIES

2.1 Difference equations

In this section, we present what do we mean by a difference equation, or-

der of a difference equation, types of difference equation and homogeneuous

difference equation of order k.

Definition 2.1. [11] A difference equation is an equation that expresses

a value of a sequence as a function of the other terms in the sequence, that

is, it defines a relation recursively.

Definition 2.2. [1] The order of difference equation is the difference

between highest and lowest indices that appear in the equation.

The difference equation of order k is of the form

xn = f(xn−1, xn−2, . . . , xn−k), n = 0, 1, 2, . . . , (2.1)

where f is a function such that f : Rk → R and the initial conditions

x−1, x−2, . . . , x−k are all arbitrary real numbers.
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Difference equations can be classified into different types according to one or

more of the following properties ([2]):

1. Linear difference equations: an equation is said to be linear if the

function f in Eq.(2.1) is a linear function.

2. Non-linear difference equations: an equation is said to be non-

linear if the function f in Eq.(2.1) is a non-linear function.

3. Linear homogeneous difference equations: a kth order linear ho-

mogeneous difference equation is an equation of the form

xn+k + P1(n)xn+k−1 + · · ·+ Pk(n)xn = 0,

where Pk(n) 6= 0, ∀n ≥ n0.

4. Linear non-homogeneous difference equations: a kth order linear

nonhomogeneous difference equation is an equation of the form

xn+k + P1(n)xn+k−1 + · · ·+ Pk(n)xn = g(n),

where Pk(n) 6= 0, ∀n ≥ n0. The sequence g(n) is called the forcing

term.

5. Autonomous difference equations: a kth order difference equation

is said to be autonomous if it is time-invariant, that is as Eq.(2.1).

6. Non-autonomous difference equations: a kth order difference equa-

tion is said to be non-autonomous if the function f can be replaced by

a new function h of k+ 1 variables such that, h : Z+×Rk → R, that is

xn = h(n, xn−1, xn−2, . . . , xn−k).

In this case the equation is time-variant.
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7. Linear difference equations with constant coefficients: a kth

order difference equation is said to be linear with constant coefficients

if it is of the form

xn+k + P1xn+k−1 + · · ·+ Pkxn = g(n),

where ∀i = 1, 2, . . . , k, P ′is are constants and Pk 6= 0.

8. Linear difference equations with non-constant coefficients: a

kth order difference equation is said to be linear with non-constant

coefficients if it is of the form

xn+k + P1(n)xn+k−1 + · · ·+ Pk(n)xn = g(n),

where Pk(n) 6= 0, ∀n ≥ n0.

We will give examples about the previous types of difference equations in the

upcoming sections.

2.2 Initial Value Problem of a Difference Equations

Definition 2.3. [8] An initial value problem of a difference equation

is a problem when we know value x0 at a particular point n0.

Example 2.4. [12] The function η(n) = 3n

(
2+ n(n−1)

6

)
is a solution for the

initial value problem

xn+1 − 3xn = 3nn; n ≥ 0 and x0 = 2,

since if we substitute η(n) into the equation, we get

3n+1

(
2 +

n(n+ 1)

6

)
− 3n+1

(
2 +

n(n− 1)

6

)
= 3n+1

(
2 +

n2

6
+
n

6
− 2− n2

6
+
n

6

)
= 3nn.
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Also, we have

η(0) = 30

(
2 +

0(0− 1)

6

)
= 2 = x0.

It should be clear that for a given difference equation, even if a solution

is known to exist, there is no assurance that it will be unique. The solution

must be restricted by given a set of initial conditions equal in number to the

order of the equation. The following theorem states condition that assure

the existence of a unique solution.

Theorem 2.5. [8] Let a kth order difference equation

x(n+ k) = f(x(n), x(n+ 1), · · · , x(n+ k − 1));n = 0, 1, 2, · · · , (2.2)

where f is defined for each of its arguments. Then Eq.(2.2) has a unique

solution corresponding to each arbitrary selection of the k initial values

x(0) = x0, x(1) = x1, · · · , x(k − 1) = xk−1.

Proof. Suppose that x(0), x(1), · · · , x(k − 1) are given. Then the difference

equation with n = 0 uniquely specifies x(k). Now x(k) is known, the differ-

ence equation with n = 1 gives x(k + 1). Continue in this way, all xn for

n ≥ k, can be determined.

We consider the following initial value problem which is a first order linear

homogeneous difference equation with constant coefficients

xn+1 = axn, n = 0, 1, 2, · · · (2.3)
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with x(0) = x0 and a is a constant. By iterations, we get

x1 = ax0,

x2 = ax1 = a2x0,

x3 = ax2 = a3x0,

...

xn = anx0. (2.4)

To prove Eq.(2.4) is a solution of Eq.(2.3), we proceed as follows

xn+1 = an+1x0 = a(anx0) = axn.

Now, to generelize Eq.(2.3) to non-homogeneuos difference equations with

non-constant coefficients, we get the following theorem.

Theorem 2.6. [11] Let a(n) and b(n) be real sequences where n ∈ N. Then

the first order linear difference equation

xn+1 + a(n)xn = b(n), (2.5)

with initial condition x0 = c, has a unique solution of the form

xn = c

(
n−1∏
i=0

−a(i)

)
+

n−1∑
i=0

(
n−1∏
j=i+1

−a(j)

)
b(i). (2.6)

Proof. First, we must show that Eq.(2.6) satisfies Eq.(2.5) and the initial

condition. We first write the expression for xn+1

xn+1 = c

(
n∏
i=0

−a(i)

)
+

n∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i).

We then rewrite the last summation above as follows,

n∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i) =

n∏
j=n+1

(
− a(j)b(n)

)
+

n−1∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i)
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since
n∏

j=n+1

(
− a(j)

)
= 1,

we get

n∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i) = b(n) +

n−1∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i)

= b(n)− a(n)

[
n−1∑
i=0

(
n−1∏
j=i+1

−a(j)

)
b(i)

]
.

Using this result we obtain,

xn+1 = −ca(n)

(
n−1∏
i=0

−a(i)

)
+ b(n)− a(n)

(
n−1∑
i=0

[
n−1∏
j=i+1

−a(j)

]
b(i)

)
,

which implies

xn+1 = −a(n)xn + b(n).

Thus, we have shown that xn is a solution. Finally we must prove uniqueness.

Assume that we have two solutions xn and x̂n, both satisfy Eq.(2.5) and the

initial condition. Now, consider the set {n ∈ N;xn 6= x̂n}. Let n0 be the

smallest integer in this set. We must have n0 ≥ 1, since x0 = x̂0. By the

definition of n0 we have xn0−1 = x̂n0−1 and then

xn0 = a(n0 − 1)xn0−1 + b(n0 − 1) = a(n0 − 1)x̂n0−1 + b(n0 − 1) = x̂n0 ,

which is a contradiction. Thus we must have n0 = 0. But x0 = x̂0 = c

since the two equations satisfy the same initial condition. It follows that the

solution is unique.
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SYMMETRIES IN MATHEMATICS

Symmetry exists in many places of our life, it takes a big part in geometry,

also in other branches of mathematics as calculus, integration, linear algebra,

abstract algebra, probability, differential equations and difference equations.

Symmetry is a type of invariance: the property that a mathematical ob-

ject remains unchanged under set of operations or transformations. In this

chapter, we review transformation, symmetry in general, symmerty in ge-

ometry, symmetry in calculus, symmetry in differential equations and a one

parameter local Lie group to have a Lie Symmetry.

Definition 3.1. [12] Transformtion or a mapping of a region A into a region

B is a rule that assigns to each point a ∈ A a unique point b ∈ B.

Definition 3.2. [12] A transformtion is a symmetry if it satisfies the follow-

ing properties:

• The transformation preserves the structure.

• The transformation is a diffeomorphism, that is a smooth invertible



11

mapping whose inverse is also smooth.

• The transformation maps the object to itself.

Definition 3.3. [12] Trivial symmetry is the transformation that maps each

point to itself.

Symmetry in Geometry: the types of symmetry considered in basic

geometry include reflection symmetry, rotation symmetry, translation sym-

metry.

Symmetry in Calculus: in even and odd functions.

Definition 3.4. Let f(x) be real-valued function of a real variabel. Then f

is even, if f(x) = f(−x), ∀x ∈ Domain(f).

Geometrically speaking, the graph of an even function is symmetric with

respect to the y-axis, meaning that its graph remains unchanged after reflec-

tion about the y-axis.

Examples of even functions include x2, x4 − 1, cos x, and coshx.

Symmetries of Differential Equations

Definition 3.5. A symmetry of differential equation is a transformation that

leaves the differential equation invariant.

Knowledge of such symmetries may help to solve the differential equation.

Definition 3.6. A line symmetry of a system of differential equations is a

continuous symmetry of the system of differential equations.

Knowledge of a line symmetry can be used to simplify an ordinary differ-

ential equation through reduction of order. For ordinary differential equation,

knowledge of an appropriate set of Lie symmetries allows one to explicitly
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calculate a set of first integrals, yielding a complete solution without inte-

gration.

Symmetries may be found by solving a related set of ordinary differntial

equations. Solving these equations is often much simpler than solving origi-

nal differential equations.

3.0.1 Symmetries Of Difference Equations

In this section, we apply the transformation for difference equations to have

a symmetry, and define a one parameter local Lie group.

Definition 3.7. [12] A transformation of a difference equation is a symmetry

if every solution of the transformed equation is a solution of the original

equation and vice versa.

The following example illustrates the above definition.

Example 3.8. [12] The map Th : xn → x̂n = hxn, ∀h ∈ R − {0} is a

transformation of the linear homogeneuous difference equation of order k:

hk(n)xn+k + hk−1(n)xn+k−1 + · · ·+ h0(n)xn = 0. (3.1)

The transformation Th means that we change each variable xn+i, i =

0, 1, . . . , k in Eq.(3.1) by hxn+i = x̂n+i, i = 0, 1, . . . , k or we can say that we

multiply Eq.(3.1) by a nonzero constant h as follows to have a transformed

equation:

hk(n)hxn+k + hk−1(n)hxn+k−1 + · · ·+ h0(n)hxn = 0

hk(n)x̂n+k + hk−1(n)x̂n+k−1 + · · ·+ h0(n)x̂n = 0 (3.2)
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Now to prove that the transformation Th is a symmetry, we need to prove

that each solution of the transformed Eq.(3.2) is a solution of the original

Eq.(3.1) and vice versa.

If x1(n), x2(n), . . . , xk(n) are linearly independent solutions of Eq.(3.1), then

the general solution of Eq.(3.1) is a linear combination of x1(n), x2(n), . . . , xk(n)

xn =
k∑
i=1

mixi(n), where mi are real constants. Need to show x̂n is a linear

combimation of x1(n), x2(n), . . . , xk(n).

The transformation Th maps the solution xn to x̂n as below

x̂n = hxn

= h
k∑
i=1

mixi(n)

=
k∑
i=1

hmixi(n)

=
k∑
i=1

m̂ixi(n) , m̂i = hmi, i = 1, 2, . . . , k.

Therefore x̂n is also a solution of Eq.(3.1) since we can write it as a linear

combination of x1(n), x2(n), . . . , xk(n).

Conversely, if x̂1(n), x̂2(n), . . . , x̂k(n) are linearly independent solutions of

Eq.(3.2), then the general solution of Eq.(3.2) is x̂n =
k∑
i=1

rix̂i(n), where ri

are real constants.

The inverse transformation is T−1h : x̂n → h−1xn (since from the second

property of the definition a Transformation to be a symmetry thats say,

the transformation is a diffomorphism, that is a smooth invertible mapping
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whose inverse is also smooth). So, T−1h maps the solution x̂n to xn as follows

xn =
1

h
x̂n

=
1

h

k∑
i=1

rix̂i(n)

=
k∑
i=1

ri
h
x̂i(n)

=
k∑
i=1

r̂ix̂i(n) , r̂i =
ri
h
, i = 1, 2, . . . , k.

Hence, xn is also a solution of Eq.(3.2) because we can write it as a linear

combination of x̂1(n), x̂2(n), . . . , x̂k(n). Thus Th is a symmetry ∀ h ∈ R−{0}.

The proof is complete.

Note that xn and x̂n are two solutions of the linear homogeneuous differ-

ence equation Eq.(3.1) because x̂n is a multiple of xn.

Theorem 3.9. [12] Consider the set of transformations G = {Th, h ∈ R −

{0}}. Then G is a group under the composition ThTl = Thl, for all h,l

∈ R− {0}.

Proof. :

• G is closed by definition.

• The identity transformation is T1 : xn → xn.

• The inverse transformation of T−1h is Th−1 = T 1
h
.



15

• (ThTl)To = ThlTo = T(hl)o = Th(lo) = ThTlo = Th(TlTo) so the associvity

property is preserved.

Definition 3.10. [12] Consider the following point transformation

Th : x→ x̂(x;h), h ∈ (h1, h2) where h1 < 0 and h2 > 0.

Then Th is a one parameter local Lie group if the following conditions are

satisfied:

1. T0 is the identity map, that is x̂ = x, where h = 0

2. ThTl = Th+l, for all h, l sufficiently close to zero.

3. Each x̂ can be represented by a Taylor series in h, such that

x̂(x;h) = x+ hψ(x) +O(h2).

Some notes for the above definition:

• The above transformation is called a point transformation since the

transformed point x̂ only depends on the point x.

• A local Lie group is a group if it satisfies the group axioms.

• In general, a one parameter local Lie group will depend only on n and

xn.

• The inverse point transformation T−1h = Th−1 , where | h | is so small.
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3.1 Lie Symmetry Of Difference Equations

In this section, we review Lie symmetry method for solving difference equa-

tions and then, we use it to solve a given first and second order difference

equations. Finally, we generalize the method for higher order difference equa-

tions.

Definition 3.11. [12] Let the transformation Th be a symmetry and a one

parameter local Lie group. Then it’s called a Lie symmetry.

In the following example, we explain Lie symmetry for a first order dif-

ference equation.

Example 3.12. [6] Consider the first order difference equation:

xn+1 − xn = 0. (3.3)

and the transformation

Tα : (n, xn)→ (n̂, x̂n) = (n, xn + α); α ∈ R (3.4)

Then, Tα is a Lie symmetry.

The transformation Tα is a symmetry for Eq.(3.3) since the solution of

Eq.(3.3) is xn = x0. Every transformation with α 6= 0 maps each solu-

tion, xn = x0 to x̂n = x0 + α, which can be written as x̂n = c; c = x0 + α.

And Tα is a one parameter local Lie group, since

1. T0 is the identity map

T0 : (n, xn)→ (n̂, x̂n) = (n, xn),
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2. TαTβ = Tα+β since

Tβ : (n, xn)→ (n, xn + β),

which implies that

TαTβ : (n, xn + β)→ (n, xn + β + α).

And

Tα+β = (n, xn)→ (n, xn + α + β).

Thus,

TαTβ = Tα+β.

3. Each x̂n can be represented as a Taylor series in α. Such that

n̂ = n, x̂n = xn + αQ(n, xn) +O(α2), (3.5)

where Q(n, xn) is a function of n and xn that depends on the difference

equation and is called a characteristic of the local Lie group. In

the previous example, the characteristic Q(n, xn) is 1. Since x̂n = xn+α

by comparing it with Eq.(3.5), we find that Q(n, xn) = 1.

Remark 3.13. For Lie symmetries, we consider n̂ = n, that is, we leave n

unchanged because n is a discrete variable, that can not be changed by a

small amount.

Recall that, we will restrict our attention to Lie symmetries for which x̂n

depends only on n and xn which are called Lie point symmetries and take

the form:

n̂ = n, x̂n = xn + αQ(n, xn) +O(α2).

If we replace n by n+ p in Eq.(3.5), that’s we do a shift, we get

x̂n+p = xn+p + αQ(n+ p, xn+p) +O(α2),
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which is called a prolongation formula for Lie point symmetries.

Now our aim is to use symmetries to obtain exact solutions for difference

equations. Because of that, we introduce the change of variables. To con-

sider the effect of changing variables from (n, xn) to (n, sn), and as Eq.(3.5)

is a symmetry for each α sufficiently close to zero, we can apply Taylor’s

theorem about α = 0, to obtain

ŝn = s(n̂, x̂n)

= s(n, x̂n)

= s(n, xn + αQ(n, xn) +O(α2)) Now apply Taylor’s theorem about α = 0

= s(n, xn + αQ(n, xn)) |α=0 +(α− 0)
ds

dα
|α=0 +O(α2)

= s(n, xn) + α(
ds

dx̂n
)(
dx̂n
dα

) |α=0 +O(α2)

= s(n, xn) + αs′(n, xn)Q(n, xn) +O(α2). (3.6)

If we denote the characteristic function with respect to (n, sn) by Q̂(n, sn)

then we get by Taylor series

ŝn = sn + αQ̂(n, sn) +O(α2)

Comparing the last equation with Eq.(3.6) we get

Q̂(n, sn) = s′(n, xn)Q(n, xn). (3.7)

The coordinate sn is called the canonical coordinate.

Note that dx̂n
dα

= Q(n, xn), since x̂n = xn + αQ(n, xn) +O(α2).

In the following example, we will illustrate the effect of changing coordinates

introduced above.
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Example 3.14. [6] Consider the change of coordinates from (n, xn) to (n, sn),

and symmetries for sn,

(n̂, ŝn) = (n, sn + α), α ∈ R.

Then the characteristic with respect to (n, sn) is Q̂(n, sn) = 1, so by Eq.(3.7),

s′(n, xn)Q(n, xn) = 1,

which implies that

s(n, xn) =

∫
dxn

Q(n, xn)
. (3.8)

Now, as an example if Q(n, xn) = xn − 1, then the canonical coordinate

according to Eq.(3.8) is

s(n, xn) =

∫
dxn
xn − 1

= ln |xn − 1| =

ln(xn − 1), xn > 1

ln(1− xn), xn < 1

In this example, the map from xn to sn isn’t injective for all R; it can’t be

inverted from sn to xn except if we specify whether xn is greater or less than

1.

But we are interested in injective maps, to have the exact solution xn in

explicit formula. As we will see in the following sections.

3.1.1 Lie Symmetries for 1stO∆E

In this section, our purpose is to solve a given first order difference equation

xn+1 = fn(xn) = f(n, xn), (3.9)

by Lie symmetries. Recall that, for any transformation of a difference equa-

tion to be a symmetry, the set of solutions must be mapped into itself. So
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the symmetry condition of Eq.(3.9) must be satisfied

x̂n+1 = f(n̂, x̂n) when xn+1 = f(n, xn). (3.10)

From the symmetry condition Eq.(3.10), we get

f̂(n, xn) ≡ f(n̂, x̂n)

= f(n, xn + αQ(n, xn) +O(α2))

= f(n, xn) + αf ′(n, xn)Q(n, xn) +O(α2). (3.11)

Also, we have from Taylor series

f̂(n, xn) = x̂n+1 = xn+1 + αQ(n+ 1, xn+1) +O(α2). (3.12)

So, by comparing Eq.(3.11) with Eq.(3.12) we have

Q(n+ 1, xn+1) = f ′(n, xn)Q(n, xn). (3.13)

This is called the linearized symmetry condition (LSC) for the given Eq.

(3.9).

The linearized symmetry condition in Eq.(3.13) is a linear functional equa-

tion which is difficult to solve.

The following example illustrates how to find (LSC) for a given first order

difference equation

Example 3.15. [6] Consider the equation

xn+1 − xn = 0,

and f ′(n, xn) = 1 since xn+1 = f(n, xn) = xn. So the linearized symmetry

condition is

Q(n+ 1, xn+1) = Q(n, xn).
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Since xn+1 = xn,

Q(n+ 1, xn) = Q(n, xn).

This condition has the general solution

Q(n, xn) = f(xn),

where f is an arbitrary function. Since Q for n and n + 1 is the same,

therefore, Q is a function that depends only on xn.

For the above example and others, we can find the general solution if we

can solve the (LSC), which is a functional equation, but not all functional

equations can be solved. Because of that, for first order difference equations

we use a practical approach that depends on assuming a trial solution for

the characteristic function in the following form

Q(n, xn) = a(n)x2n + b(n)xn + c(n), (3.14)

where a(n), b(n) and c(n) are functions of n. We can find them after substi-

tuting Eq.(3.14) in Eq.(3.13) and comparing the powers of xn.

Example 3.16. [6] Find the characteristic function for the following first

order difference equation

xn+1 =
xn

1 + nxn
, n ≥ 1. (3.15)

Solution: we need to find f ′ and then substitute it in LSC as follows:

f(n, xn) = xn
1+nxn

. So, f ′(n, xn) = 1
(1+nxn)2

. Then the LSC is

Q(n+ 1, xn+1) =
1

(1 + nxn)2
Q(n, xn).

Now we use the trial solution (3.14), to get

a(n+1)x2n+1+b(n+1)xn+1+c(n+1) =
1

(1 + nxn)2

(
a(n)x2n+b(n)xn+c(n)

)
.
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Now substitue xn+1 = xn
1+nxn

to get,

a(n+ 1)
x2n

(1 + nxn)2
+ b(n+ 1)

xn
1 + nxn

+ c(n+ 1) =

1

(1 + nxn)2

(
a(n)x2n + b(n)xn + c(n)

)
, (3.16)

After multiplying Eq.(4.20) by (1 + nxn)2, we get

a(n+1)x2n+b(n+1)xn(1+nxn)+c(n+1)(1+nxn)2 = a(n)x2n+b(n)xn+c(n).

Therefore,

a(n+1)x2n+b(n+1)xn+nb(n+1)x2n+c(n+1)+2nc(n+1)xn+n2c(n+1)x2n

= a(n)x2n + b(n)xn + c(n). (3.17)

Rearrange the above equation as follows:(
a(n+1)+nb(n+1)+n2c(n+1)

)
x2n+

(
b(n+1)+2nc(n+1)

)
xn+c(n+1)

= a(n)x2n + b(n)xn + c(n). (3.18)

Comparing the powers of xn, we get the following system:

a(n+ 1) + nb(n+ 1) + n2c(n+ 1) = a(n), (3.19)

b(n+ 1) + 2nc(n+ 1) = b(n), (3.20)

c(n+ 1) = c(n). (3.21)

We solve the above system by using backward substitution, starting with

Eq.(3.21), which is a first order linear homogeneuous difference equation

whose solution is

c(n) = α, α ∈ R
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Then, substitute c(n) = α in Eq. (3.20) to get also a first order difference

equation

b(n+ 1)− b(n) = −2nα,

whose solution is

b(n) = β −
n−1∑
i=0

(2αi).

So

b(n) = β − αn(n− 1), α, β ∈ R.

The last step is to substitute b(n) and c(n) in Eq.(3.19), to get

a(n+ 1)− a(n) = −nβ + n3α

Which is also a first order linear non-homogeneuous difference equation,

whose general solution is

a(n) = γ −
n−1∑
i=0

(βi) +
n−1∑
i=0

(αi3)

= γ − βn(n− 1)

2
+ α

n2(n− 1)2

4
, α, β, γ ∈ R.

After finding a(n), b(n) and c(n). The characteristic equation is

Q(n, xn) =

(
γ − βn(n− 1)

2
+ α

n2(n− 1)2

4

)
x2n+

(
β − αn(n− 1)

)
xn + α.

It remains to find the genaral solution {xn}, we use the following steps:

1. Determining the characteristic function Q(n, xn).

2. Finding the canonical coordinate yn. To simplify the calculations we

assume that Q̂(n, yn) = 1, then

y(n, xn) =

∫
dxn

Q(n, xn)
.
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3. From step 2, we have y as a function of n and xn, we write a difference

equation of yn, and solve a first order difference equation.

4. Write the solution in step 3 in terms of xn, and note that this happens

only if we can invert the map xn to yn. This condition is called a

compatible canonical coordinate.

In the following example, we illustrate the above steps.

Example 3.17. [6] Find the general solution {xn}, for

xn+1 =
xn

1 + nxn
, n ≥ 1.

Solution: Now we use the canonical coordinate which is injective after we

find the characteristic function. Then, we find the genaral solution as follow:

from pervious example, we find the characteristic Q(n, xn) which is

Q(n, xn) =

(
γ − βn(n− 1)

2
+ α

n2(n− 1)2

4

)
x2n+

(
β − αn(n− 1)

)
xn + α.

To simplify calculations, we assume α = β = 0 and γ = 1. Therefore,

Q(n, xn) = x2n. The canonical coordinate is

y(n, xn) =

∫
dxn
x2n

=
−1

xn
+ c, c ∈ R,

which is invertible, that is we can write xn in terms of yn. Consider the

difference equation

yn+1 − yn =
−1

xn+1

− −1

xn
.

If we substitute xn+1 = xn
1+nxn

, we get a first order difference equation in yn,

yn+1 − yn = −n,

which has general solution:

yn = m− n(n− 1)

2
; m ∈ R.
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Since yn = −1
xn

, so the general solution of the original difference equation is:

xn =
2

−2m+ n(n− 1)
; n ≥ 1,m ∈ R.

Remark 3.18. For a differnce equation, we have more than one characteris-

tic function that depends on constants. Every time we choose the constants

that simplify our calculations.

3.1.2 Lie Symmetries for 2ndO∆E

In this section, we need to solve a given second order difference equation by

Lie symmetries. The idea is, to find the linearized symmetry condition (LSC)

for second order difference equations, as we did for first order difference

equations.

Now, consider the difference equation

xn+2 = f(n, xn, xn+1); n ∈ Z, (3.22)

we assume that ∂f
∂xn+1

6= 0, (this condition ensures that the equation is truely

second order), the symmetry condition is

x̂n+2 = f(n̂, x̂n, x̂n+1), when Eq.(3.22) holds. (3.23)

As we did for first order equations, from symmetry condition Eq.(3.23), we

have

f(n̂, x̂n, x̂n+1) = f(n, xn + αQ(n, xn), xn+1 + αQ(n+ 1, xn+1)). (3.24)
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Need to find Taylor series for the right hand side about α = 0, we get

f(n̂, x̂n, x̂n+1) = f(n, xn, xn+1) + α

(
∂f

∂x̂n+1

∂x̂n+1

∂α
|α=0 +

∂f

∂x̂n

∂x̂n
∂α
|α=0

)
+O(α2)

= f(n, xn, xn+1) + α

(
∂f

∂xn+1

Q(n+ 1, xn+1) +
∂f

∂xn
Q(n, xn)

)
+O(α2),

(3.25)

also we have

f(n̂, x̂n, x̂n+1) = f̂(n, xn, xn+1) = x̂n+2 = f(n, xn, xn+1)+αQ(n+2, xn+2)+O(α2).

(3.26)

By comparing Eq.(3.25) and Eq.(3.26),we get the linearized symmetry

condition (LSC) for second order difference equation

Q(n+ 2, xn+2) =
∂f

∂xn+1

Q(n+ 1, xn+1) +
∂f

∂xn
Q(n, xn)

We need to simplify this formula, since it is a functional equation which is

hard to solve. The more important concept that plays a big role in simplifing

(LSC) for second order and higher orders is the infinitesimal generator.

Definition 3.19. [7] The infinitesimal generator I for a differnce equation

of order p is

I =

p−1∑
k=0

(SkQ(n, xn))
∂

∂xn+k
,

where Sk is the forward shift operator such that Skxn = xn+k.

Therefore, by the above definition the Linearized symmetry condition for
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second order difference equations becomes

Q(n+ 2, xn+2) =
∂f

∂xn
Q(n, xn) +

∂f

∂xn+1

Q(n+ 1, xn+1)

S2Q(n, xn) = S0Q(n, xn)
∂f

∂xn
+ SQ(n+ 1, xn+1)

∂f

∂xn+1

S2Q(n, xn) =
1∑

k=0

(SkQ(n, xn))
∂f

∂xn+k

S2Q = If (3.27)

Eq.(3.27) is a linear functional equation for the characteristics Q(n, xn).

But functional equations are generally hard to solve. Luckily, Lie symmetries

are diffeomorphisms, that is, Q(n, xn) is a smooth function, this implies that

the linearized symmetry condition can be solved by the method of differential

elimination. That is, we transform Eq.(3.27) from a functional equation into

a differential equation. We consider the difference equations that satisfies

the conditions ∂f
∂xn+1

6= 0 and ∂f
∂xn
6= 0. We follow two steps.

Firstly, by elliminating Q(n + 2, xn+2) and Q(n + 1, xn+1), we can form

an ordinary differential equation of Q(n, xn).

To achieve this objective we differentiate the linearized symmetry condition

with respect to xn keeping f fixed and we consider xn+1 to be a function of

n, xn and f . Therefore, we apply the differential operator (L)

L =
∂

∂xn
+
∂xn+1

∂xn

∂

∂xn+1

,

but
∂xn+1

∂xn
= − ∂f/∂xn

∂f/∂xn+1

.

The first term of the functional equation Eq.(3.27) is elliminated by this

differential operator, since we differentiate with respect to xn keeping f fixed,
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so we obtain

∂

∂xn

(
Q(n+ 2, f)

)
= 0,

∂

∂xn

(
∂f

∂xn
Q(n, xn)

)
=

∂f

∂xn
Q′(n, xn) +

∂2f

∂x2n
Q(n, xn),

∂

∂xn

(
∂f

∂xn+1

Q(n+ 1, xn+1)

)
=

∂2f

∂xn∂xn+1

Q(n+ 1, xn+1),

and

∂

∂xn+1

(
Q(n+ 2, f)

)
= 0,

∂

∂xn+1

(
∂f

∂xn
Q(n, xn)

)
=

∂2f

∂xn+1∂xn
Q(n, xn),

∂

∂xn+1

(
∂f

∂xn+1

Q(n+ 1, xn+1)

)
=

∂f

∂xn+1

Q′(n+ 1, xn+1) +
∂2f

∂x2n+1

Q(n+ 1, xn+1).

This implies that(
− ∂f

∂xn
Q′(n, xn)− ∂2f

∂x2n
Q(n, xn)− ∂2f

∂xn∂xn+1

Q(n+ 1, xn+1)

)
+(

∂xn+1

∂xn

)(
− ∂2f

∂xn+1∂xn
Q(n, xn)− ∂f

∂xn+1

Q′(n+1, xn+1)−
∂2f

∂x2n+1

Q(n+1, xn+1)

)
= 0.

Secondly, we elliminate Q′(n+ 1, xn+1).

By differentiating the equation obtained in the previous step with respect

to xn keeping xn+1 fixed. We may have to differentiate once more with re-

spect to xn keeping xn+1 fixed. After that, we obtain an ordinary differential

equation, which can be split by gathering together all terms with the same

dependence upon xn+1 and we solve it if possible, and obtain Q(n, xn). To

find the coefficients of the terms of Q(n, xn), we plug it in the equations

that we obtained in previous steps which can be split into a system of linear
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difference equations by collecting all terms with the same dependence on xn

and xn+1.

Therefore, we will have a characteristic function Q(n, xn) for second order

difference equations. The following example illustrates the above steps.

Example 3.20. [12] Find the characteristic functions of the following second

order difference equation

xn+2 =
axnxn+1

xn + xn+1

; a ∈ R∗. (3.28)

Solution: Note that

f(n, xn, xn+1) =
axnxn+1

xn + xn+1

.

The LSC of Eq.(3.28) is

Q(n+ 2, xn+2)−
∂f

∂xn
Q(n, xn)− ∂f

∂xn+1

Q(n+ 1, xn+1) = 0,

Now need to find ∂f
∂xn

and ∂f
∂xn+1

.

So,
∂f

∂xn
=

ax2n+1

(xn + xn+1)2
=

f 2

ax2n
,

and
∂f

∂xn+1

=
ax2n

(xn + xn+1)2
=

f 2

ax2n+1

,

so the LSC is

Q(n+ 2, xn+2)−
f 2

ax2n
Q(n, xn)− f 2

ax2n+1

Q(n+ 1, xn+1) = 0. (3.29)

Second step is, to apply an appropriate diffferentail operator L, to reduce

the number of unknown functions Q(n + 2, xn+2) and Q(n + 1, xn+1), and
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to transform this functional equation to differential equation. Note that

∂xn+1

∂xn
= −x2n+1

x2n
,

L =
∂

∂xn
+
∂xn+1

∂xn

∂

∂xn+1

,

=
∂

∂xn
−
x2n+1

x2n

∂

∂xn+1

.

Now, apply L to Eq.(3.28) to get

(
∂

∂xn
−
x2n+1

x2n

∂

∂xn+1

)(Q(n+2, xn+2)−
f 2

ax2n
Q(n, xn)− f 2

ax2n+1

Q(n+1, xn+1)) = 0,

(3.30)

but we have,

∂

∂xn
(Q(n+ 2, xn+2)) = 0,

∂

∂xn
(
f 2

ax2n
Q(n, xn)) =

f 2

ax2n
Q′(n, xn)− 2f 2

ax3n
Q(n, xn),

∂

∂xn
(
f 2

ax2n+1

Q(n+ 1, xn+1)) = 0,

and

∂

∂xn+1

(Q(n+ 2, xn+2)) = 0,

∂

∂xn+1

(
f 2

ax2n
Q(n, xn)) = 0,

∂

∂xn+1

(
f 2

ax2n+1

Q(n+ 1, xn+1)) =
f 2

ax2n+1

Q′(n+ 1, xn+1) +
−2f 2

ax3n+1

Q(n+ 1, xn+1).

From the above calculations Eq.(3.30) can be written as

−f 2

ax2n
Q′(n, xn)+

2f 2

ax3n
Q(n, xn)−

x2n+1

x2n
(
−f 2

ax2n+1

Q′(n+1, xn+1)+
2f 2

ax3n+1

Q(n+1, xn+1)) = 0,

multiplying the last equation by −ax
2
n

f2
, we get

Q′(n, xn)− 2

xn
Q(n, xn)−Q′(n+ 1, xn+1) +

2

xn+1

Q(n+ 1, xn+1) = 0. (3.31)
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Now, we differentiate Eq.(3.31) with respect to xn keeping xn+1 fixed, we

obtain

∂

∂xn
(Q′(n, xn)− 2

xn
Q(n, xn)−Q′(n+ 1, xn+1) +

2

xn+1

Q(n+ 1, xn+1)) = 0,

but

∂

∂xn
(Q′(n, xn)) = Q′′(n, xn),

∂

∂xn
(

2

xn
Q(n, xn)) =

2

xn
Q′(n, xn) +

−2

x2n
Q(n, xn),

∂

∂xn
(Q′(n+ 1, xn+1)) = 0,

∂

∂xn
(

2

xn+1

Q(n+ 1, xn+1)) = 0,

so

Q′′(n, xn)− 2

xn
Q′(n, xn) +

2

x2n
Q(n, xn) = 0,

multiply this equation by x2n, we get

x2nQ
′′(n, xn)− 2xnQ

′(n, xn) + 2Q(n, xn) = 0,

Note that, we got a differential equation in Q(n, xn), which is an Euler dif-

ferential equation whose solution is given by

Q(n, xn) = λ(n)x2n + η(n)xn,

for some functions λ and η of n. Note that

Q′(n, xn) = 2λ(n)xn + η(n),

substitue Q and Q′ into Eq.(3.31) we get

2λ(n)xn + η(n)− 2

xn
(λ(n)x2n + η(n)xn)− 2λ(n+ 1)xn+1 − η(n+ 1)+

2

xn+1

(λ(n+ 1)x2n+1 + η(n+ 1)xn+1) = 0,
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simplifying, we get

2λ(n)xn+η(n)−2λ(n)xn−2η(n)−2λ(n+1)xn+1−η(n+1)+2λ(n+1)xn+1+2η(n+1) = 0.

Hence, the only terms that we have are

η(n+ 1) = η(n),

which is a first order linear homogeneuous difference equation whose solution

is

η(n) = c, c ∈ R.

Now, Q becomes Q(n, xn) = λ(n)x2n + cxn, substitute η(n) = c in the LSC

to obtain

λ(n+2)x2n+2+cxn+2−
f 2

ax2n
(λ(n)x2n+cxn)− f 2

ax2n+1

(λ(n+1)x2n+1+cxn+1) = 0,

(3.32)

substitute xn+2 = f , to get(
λ(n+2)f 2− f

2

a
λ(n)− f

2

a
λ(n+1)

)
+

(
cf−cf f

axn
−cf f

axn+1

)
= 0, (3.33)

note that the second parentheses is 0 since

cf − cf f

axn
− cf f

axn+1

= cf − cf xn+1

xn + xn+1

− cf xn
xn + xn+1

=

cf

(
1− xn

xn + xn+1

− xn+1

xn + xn+1

)
= cf

(
0

xn + xn+1

)
= 0.

Therefore, Eq.(3.33) implies

λ(n+ 2)f 2 − f 2

a
λ(n)− f 2

a
λ(n+ 1) = 0,

hence,

λ(n+ 2)− 1

a
λ(n)− 1

a
λ(n+ 1) = 0,
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which is a second order difference equation, to solve it, we find it’s charac-

teristic equation

rn+2 − 1

a
rn+1 − 1

a
rn = 0,

ar2 − r − 1 = 0. (3.34)

The roots of Eq.(3.34) are

r1,2 =
1±
√

1 + 4a

2a
.

We have two cases depending on the value of a:

1. If a = −1
4

, then r = −2 (two roots real and repeated). It follows

λ(n) = c1(−2)n + c2n(−2)n, c1, c2 ∈ R,

so the characteristic function is

Q(n, xn) = (c1(−2)n + c2n(−2)n)x2n + cxn,

2. Ifa 6= −1
4

, then

λ(n) = c1

(
1 +
√

1 + 4a

2a

)n

+ c2

(
1−
√

1 + 4a

2a

)n

,

so the characteristic function is

Q(n, xn) =

(
c1

(
1 +
√

1 + 4a

2a

)n

+ c2

(
1−
√

1 + 4a

2a

)n)
x2n + cxn,

where c, c1 and c2 ∈ R.

Now, we use symmetries to reduce the order of difference equations. We

find a compatible canonical coordinate, which reduces the order by one. If

the reduced equation can be solved, then the original equation can be solved

by one more integration or summation.
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Definition 3.21. [10] A function vn is invariant under the Lie group of

transformations Th if Ivn = 0, where I is the infinitesimal generator, such

that I =
p−1∑
k=0

SkQ(n, xn) ∂
∂xn+k

.

Suppose that the characteristic Q(n, xn) for the second order difference

equation

xn+2 = f(n, xn, xn+1),

is known, then the invariant vn can be found by solving the partial differential

equation

Ivn = Q(n, xn)
∂vn
∂xn

+Q(n+ 1, xn+1)
∂vn
∂xn+1

= 0,

which is a quasi linear partial differential equation that can be solved using

the method of characteristics, set

dxn
Q(n, xn)

=
dxn+1

SQ(n, xn)
=
dvn
0
. (3.35)

If the invariant function vn+1(n, xn, xn+1) can be written as a function of n

and vn only, then vn can reduce the order of the difference equation by one

to obtain

xn+1 = g(n, xn, vn),

for some function g. This equation is first order difference equation.

Finally, as we mentioned in the previous section, to solve the first order

equation, we need to obtain a canonical coordinate sn.

Example 3.22. [6] Find the general solution for the previous example, with

a = 2,

xn+2 =
2xnxn+1

xn + xn+1

.

If a = 2, then Q(n, xn) =

(
c1 + c2(

−1
2

)n

)
x2n + cxn. Now we will choose

c, c1, and c2 such that we simplify our calculations. Therefore, if c1 = 1
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and c = c2 = 0. Then Q(n, xn) = x2n. Next step is to find the canonical

coordinate sn, also for second order equations we assume that Q̂(n, sn) = 1,

implies

sn =

∫
dxn

Q(n, xn)
=

∫
dxn
x2n

=
−1

xn
.

By Eq.(3.35), the invarient vn is given by

dxn
x2n

=
dxn+1

x2n+1

=
dvn
0
.

Taking the second and first invarients, we have∫
dxn+1

x2n+1

=

∫
dxn
x2n

,

−1

xn+1

=
−1

xn
+ c1, which implies c1 =

−1

xn+1

− −1

xn
, c1 ∈ R.

Taking the third and first invarients, we have

dvn
0

=
dxn
x2n

,

by reciprocal multiplication, we get dvn = 0. Therefore,

vn = c2, c2 ∈ R,

such that c2 = g(c1) where g is an arbitrary function. We will choose it to

be the identity such that g(c1) = c1 and hence c2 = c1.

Therefore,

vn = c2 =
1

xn
− 1

xn+1

.

Applying the shift operator to vn, we get

vn+1 =
1

xn+1

− 1

xn+2

=
1

xn+1

− xn+1 + xn
2xnxn+1

=
1

2xn+1

− 1

2xn

= −vn
2
.
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So, we have a first order linear homogeneuous difference equation:

vn+1 +
vn
2

= 0,

whose solution is given by

vn = c3

(
−1

2

)n

, where c3 ∈ R.

It follows that

sn+1 − sn =
−1

xn+1

− −1

xn
= vn = c3

(
−1

2

)n

.

This equation is a first order linear non-homogeneuous difference equation

whose solution is given by

sn = s0 +
n−1∑
k=0

c3

(
−1

2

)k

= s0 + c3
(1− (−1

2
)n)

1− −1
2

= s0 + c3
2(1− (−1

2
)n)

3
,

but sn = −1
xn

, so

xn =
−1

s0 + c3
2(1−(−1

2
)n)

3

=
−1

−1
x0

+ c3
2(1−(−1

2
)n)

3

=
1

1
x0
− 2

3
c3(1− (−1

2
)n)

=
1

( 1
x0
− 2c3

3
) + 2c3

3
(−2)−n

=
1

ĉ1 + ĉ2(−2)−n
,

where ĉ1 and ĉ2 ∈ R, and they are not both zero.

In short, the general technique for obtaining Lie point symmetry of any

difference equation of order k ≥ 2 is
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1. Write the LSC.

2. Apply appropriate differential operators to reduce the number of un-

known functions.

3. Having reached a differential equation, back-substitute and solve the

resulting linear difference equation.

4. Iterate, if necessary.



4

HOMOGENEOUS DIFFERENCE

EQUATIONS

In this chapter, we will talk about reduction of order method for homogeneu-

ous difference equations of degree one denoted by (HD1), and we consider

some examples. Then, we provide Euler’s theorem for homogeneuous func-

tions that we use in explaining the relation between reduction of order for

HD1 and Lie symmetry method.

4.1 Introduction

In this section, we present what do we mean by a homogeneuous difference

equation of order k in both cases multiplicative and additive.

Definition 4.1. [4] A function f : Rn → R is called multiplicative ho-

mogeneous of degree k ;for short MHk; if

f(tx1, · · · , txn) = tkf(x1, · · · , xn)
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for all t ∈ R+.

Definition 4.2. [4] A function f : Rn → R is called additive homoge-

neous of degree k ;for short AHk; if

f(t+ x1, · · · , t+ xn) = tk + f(x1, · · · , xn)

for all t ∈ R+.

A special case if k = 1, then the function f is called homogeneuous of

degree one (HD1). As a result, we say (MH1) and (AH1) in multiplicative

and additive cases, respectively.

4.2 Order Reduction Theorem For HD1

In this section, we present a theorem that plays an important role in reducing

the order of difference equations in both cases multiplicative and additive.

H. Sedaghat in [5] shows that every difference equation of order k + 1

xn+1 = fn(xn, xn−1, · · · , xn−k), (4.1)

with each mapping fn being homogeneous of degree one with positive initial

conditions is equivalent to a system that consists of an equation of order k

and a linear equation of order one.

Definition 4.3. [5] The difference equation Eq.(4.1) is said to be MH1 if

fn is MH1,∀ n = 0, 1, · · · .

Definition 4.4. [5] The difference equation Eq.(4.1) is said to be AH1 if fn

is AH1, ∀ n = 0, 1, · · · .

We have the following theorem.
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Theorem 4.5. [5] Let G be a nontrivial group. And let

xn+1 = fn(xn, xn−1, · · · , xn−k), (4.2)

be an equation of order k + 1. Then,

1. If fn is MH1 relative to G for all n ≥ 1, then Eq.(4.2) is equivalent to

the following system of equations

rn+1 = fn(1, r−1n , (rn−1rn)−1, · · · , (rn−k+1 · · · rn−1rn)−1), (4.3)

sn+1 = snrn+1. (4.4)

2. If fn is AH1 relative to G for all n ≥ 1, then Eq.(4.2) is equivalent to

the following system of equations

rn+1 = fn(0,−rn,−rn−1 − rn, · · · ,−rn−k+1 − · · · − rn), (4.5)

sn+1 = sn + rn+1. (4.6)

Where the first equation in each system is of order k and the second is linear

in sn of order 1.

Proof. 1. suppose for each solution {xn}∞n=−k of Eq.(4.2), we define

rn = x−1n−1xn,∀n = −k + 1,−k + 2, · · · .

Then,

rn+1 = x−1n xn+1

= x−1n fn(xn, xn−1, xn−2, · · · , xn−k)

= fn(x−1n xn, x
−1
n xn−1, x

−1
n xn−2, · · · , x−1n xn−k)

= fn(1, x−1n xn−1, (x
−1
n xn−1)(x

−1
n−1xn−2), · · · , (x−1n xn−1)(x

−1
n−1xn−2)

· · · (x−1n−k+1xn−k))
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= fn(1, r−1n , (rn−1rn)−1, · · · , (rn−k+1 · · · rn−1rn)−1).

It follows that {rn}∞n=−k+1 is a solution of Eq.(4.3). And since xn+1 =

xnrn+1, let sn = xn for n = −k + 1,−k + 2, · · · , we have

sn+1 = snrn+1.

It follows that {sn}∞n=−k+1 is a solution of Eq.(4.4), so that {(rn, sn)}∞n=−k+1

is a solution of the system.

Conversely, suppose {(rn, sn)}∞n=−k+1 be a solution of the system. Then

{rn}∞n=−k+1 is a solution of Eq.(4.3) and {sn}∞n=−k+1 is a solution of

Eq.(4.4). Choose x−k ∈ G and set xn = sn for n = −k+ 1,−k+ 2, · · · .

Then,

xn+1 = sn+1

= snrn+1

= xnfn(1, r−1n , (rn−1rn)−1, · · · , (rn−k+1 · · · rn−1rn)−1)

= fn(xn, xn(x−1n−1xn)−1, xn(x−1n−2xn)−1, · · · , xn(x−1n−kxn)−1)

= fn(xn, xn−1, · · · , xn−k).

It follows that {xn}∞n=−k is a solution of Eq.(4.2).

2. suppose for each solution {xn}∞n=−k of Eq.(4.2), we define

rn = xn − xn−1, ∀n = −k + 1,−k + 2, · · · .

Then,

rn+1 = xn+1 − xn

= −xn + fn(xn, xn−1, xn−2, · · · , xn−k)

= fn(−xn + xn,−xn + xn−1,−xn + xn−2, · · · ,−xn + xn−k)
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= fn(0,−xn + xn−1, (−xn + xn−1) + (−xn−1 + xn−2), · · · ,

(−xn + xn−1) + (−xn−1 + xn−2) + · · ·+ (−xn−k+1 + xn−k))

= fn(0,−rn,−rn − rn−1, · · · ,−rn − rn−1 − · · · − rn−k+1).

It follows that {rn}∞n=−k+1 is a solution of Eq.(4.5). And since xn+1 =

xn + rn+1, let sn = xn for n = −k + 1,−k + 2, · · · , we have

sn+1 = sn + rn+1.

It follows that {sn}∞n=−k+1 is a solution of Eq.(4.6). so that {(rn, sn)}∞n=−k+1

is a solution of the system.

Conversely, suppose {(rn, sn)}∞n=−k+1 be a solution of the system. Then

{rn}∞n=−k+1 is a solution of Eq.(4.5) and {sn}∞n=−k+1 is a solution of

Eq.(4.6). Choose x−k ∈ G and set xn = sn for n = −k+ 1,−k+ 2, · · · .

Then,

xn+1 = sn+1

= sn + rn+1

= xn + fn(0,−rn,−rn − rn−1, · · · ,−rn − rn−1 − · · · − rn−k+1)

= fn(xn + 0, xn − rn, xn − rn − rn−1, · · · , xn − rn − rn−1 − · · · − rn−k+1)

= fn(xn, xn−1, · · · , xn−k).

It follows that {xn}∞n=−k is a solution of Eq.(4.2).

Remark 4.6. [5]

1. We can construct the first equation in each of the above systems in the

previous theorem quickly by substitution as follows
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If f is MH1, then

1 −→ xn, (rn−i+1 · · · rn−1rn)−1 −→ xn−i

for i = 1, 2, · · · , k.

And if f is AH1, then

0 −→ xn,−rn−i+1 − · · · − rn−1 − rn −→ xn−i

for i = 1, 2, · · · , k.

2. The system in the above theorem in each case can be solved explicitly

in terms of a solution {rn}∞n=−k+1 as follows

If f is MH1, then

sn = s0r1r2 · · · rn, n = 1, 2, 3, · · · ,

and since xn = sn for n = −k + 1,−k + 2, · · · . Therefore, the solution

of Eq.(4.2) is

xn = x0

n∏
i=1

ri.

And if f is AH1, then

sn = s0 + r1 + r2 + · · ·+ rn, n = 1, 2, 3, · · · .

It follows that the solution of Eq.(4.2) is

xn = x0 +
n∑
i=1

ri.

Thus for HD1 functions in both cases MH1 and AH1 , the above

theorem essentially reduces the study of Eq.(4.2) with order k + 1 to

that of the first equation of the above system which is of order k.

Here, we will discuss equations of order k ≥ 2, to illustrate the above

theorem.
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Example 4.7. [4] Consider the non-autonomous second order rational

difference equation

xn+1 =
anx

2
n + bnxnxn−1
cnxn−1

, (4.7)

where an, bn ≥ 0 with an+bn > 0 and cn > 0 for all n. The previous equation

can be written as

xn+1 =
αnx

2
n + βnxnxn−1
xn−1

, (4.8)

where αn = an
cn

, βn = bn
cn

.

fn is MH1 under multiplication for all n ≥ 1, since ∀t > 0,

fn(txn, txn−1) =
αn(txn)2 + βn(txn)(txn−1)

txn−1

=
t2(αnx

2
n + βnxnxn−1)

txn−1
= tfn(xn, xn−1).

By the above theorem Eq.(4.7) is equivalent to the following system

rn+1 = fn(1, r−1n ),

sn+1 = snrn+1.

Now, solving the first equation of the system

rn+1 = fn(1, r−1n )

= fn(1,
1

rn
)

= αnrn + βn.

Therefore, rn+1 is a first order linear non-homogeneuous difference equation,

whose solution is

rn =
n−1∏
i=0

αir0 +
n−1∑
i=0

(
n−1∏
j=i

αj)βi (4.9)
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where r0 is an initial value for rn.

Thus, the solution of Eq.(4.8) can be written as follows

xn = x0

n∏
k=1

rk (4.10)

where rk is given by Eq.(4.9).

Example 4.8. [4] Consider the non-autonomous second order difference

equation

xn+1 = an + xn + cn(bn + xn − xn−1)2 (4.11)

where an, bn and cn are given sequences of real numbers. This example illus-

trates the additive case, fn is AH1 for all n ≥ 1 since ∀t > 0,

fn(t+ xn, t+ xn−1) = an + t+ xn + cn(bn + t+ xn − t− xn−1)2

= t+ fn(xn, xn−1).

Thus, Eq.(4.11) is equivalent to the following system according to theorem(4.5)

rn+1 = fn(0,−rn)

sn+1 = snrn+1

The first equation of the system becomes

rn+1 = an + cn(bn + rn)2 (4.12)

which is a first order non-linear difference equation, after solving it, the

solution of Eq. (4.11) is given as

xn = x0 +
n∑
i=1

ri.

In particular, if an → 0, bn → 0, and cn → 1. Then

rn+1 = r2n (4.13)
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Eq.(4.13) can be solved recursively. Let r0 be given, then

n = 1, r1 = r20 = r2
1

0 ,

n = 2, r2 = r21 = r40 = r2
2

0 ,

n = 3, r3 = r22 = r80 = r2
3

0 ,

n = 4, r4 = r23 = r160 = r2
4

0 ,

...

n = k, rk = r2k−1 = r2
k

0 ,

Therefore, the solution of Eq.(4.13) is

rn = r2
n

0 ,

where r0 = x0 − xn−1. And in this case, the solution xn is

xn = x0 +
n∑
i=1

r2
i

0 = x0 +
r20(1− r2

n

0 )

1− r20
= x0 +

(x0 − xn−1)2(1− (x0 − xn−1)2
n
)

1− (x0 − xn−1)2
.

Example 4.9. [5] Consider the autonomous third order difference equation

that is both AH1 and MH1

xn+1 = xn +
a(xn − xn−1)2

xn−1 − xn−2
, (4.14)

where a > 0, and the initial conditions x−2, x−1, and x0 are positive such

that x0, x−2 6= x−1.

We will solve Eq.(4.14) as an AH1. Therefore, it can be reduced to an

equation of order two such that

rn+1 = f(0,−rn,−rn − rn−1) =
ar2n
rn−1

, (4.15)

with rn = xn − xn−1, note that rn 6= 0 ∀ n ≥ 1.

The solution of Eq.(4.15) can be written with respect to rn as

xn = x0 +
n∑
i=1

ri, (4.16)
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Now, we need to find ri and then substitute it in Eq.(4.16).

Note that Eq.(4.15) is MH1, hence we can reduce it to a first order difference

equation such that if we consider

rn+1 =
ar2n
rn−1

= g(rn, rn−1), (4.17)

then it’s reduced equation is

tn+1 = g(1,
1

tn
) = atn, (4.18)

with tn = rn
rn−1

, and the solution of Eq.(4.17) using Eq.(4.18) can be written

as

rk = r0

k∏
i=1

ti, (4.19)

Eq.(4.18) is a first order linear homogeneuous difference equation, its solution

is given by

tk = akt0,

with t0 = r0
r−1

. And then Eq.(4.19) becomes

rk = r0

k∏
i=1

ait0

= r0t
k
0(a1+2+···+k)

= r0t
k
0a

k(k+1)
2 . (4.20)

Substitute Eq.(4.19) into Eq.(4.16) to get

xn = x0 + r0

n∑
i=1

ti0a
i(i+1)

2 = x0 + r0

n∑
i=1

(t0a
i+1
2 )i,

where t0 = x0−x−1

x−1−x−2
.

Example 4.10. [5] Consider the autonomous rational difference equation of

order k + 1

xn+1 = xn(
axn−k+1

xn−k
+ b), (4.21)
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where a, b > 0, and a+ b 6= 1.

Eq.(4.21) is MH1, and it is reducible to an equation of order k.

Let rn = xn
xn−1

, then

xn+1

xn
=

axn−k+1

xn−k
+ b,

rn+1 = arn−k+1 + b. (4.22)

Eq.(4.22) can be written as:

rn+k = arn + b, (4.23)

Eq.(4.22) can be solved recursively. Let r0, r1, · · · , rk−1 be given, then

n = 0, rk = ar0 + b,

n = 1, rk+1 = ar1 + b,

...

n = k − 1, r2k−1 = ark−1 + b,

n = k, r2k = ark + b = a2r0 + ab+ b,

n = k + 1, r2k+1 = ark+1 + b = a2r1 + ab+ b,

...

n = 2k − 1, r3k−1 = ar2k−1 + b = a2rk−1 + ab+ b,

n = 2k, r3k = ar2k + b = a3r0 + a2b+ ab+ b,

n = 2k + 1, r3k+1 = ar2k+1 + b = a3r1 + a2b+ ab+ b,

...

n = 3k − 1, r4k−1 = ar3k−1 + b = a3rk−1 + a2b+ ab+ b.
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We note that

rk = ar0 + b,

r2k = a2r0 + ab+ b,

r3k = a3r0 + a2b+ ab+ b,

...

we conclude that the formula of the solution with respect to r0 is

rn = rmk = amr0 + b

m−1∑
i=0

ai, m = 1, 2, 3, · · · .

And

rk+1 = ar1 + b,

r2k+1 = a2r1 + ab+ b,

r3k+1 = a3r1 + a2b+ ab+ b,

...

We conclude that the formula of the solution with respect to r1 is

rn = rmk+1 = amr1 + b
m−1∑
i=0

ai, m = 1, 2, 3, · · · .

If we do the same notations and calculations as above, we will reach to the

last rk−1, and we conclude that

rn = rmk+k−1 = amrk−1 + b

m−1∑
i=0

ai, m = 1, 2, 3, · · · .

Therefore, the general solution of Eq.(4.23) is

rn = rnk+t = anrt + b
an − 1

a− 1
= an

(
rt +

b

a− 1

)
− b

a− 1
, (4.24)
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where n = 1, 2, 3, . . . ,∀t = 0, 1, · · · , k − 1. Now the solution of Eq.(4.21) is

xn = x0

n∏
j=1

rj = x0

n∏
j=1

(
aj

(
rt +

b

a− 1

)
− b

a− 1

)
,

∀t = 0, · · · , k − 1 and rn = xn
xn−1

.

Example 4.11. [5] Consider the autonomous rational difference equation of

order k + 1

xn+1 = xn +
b

a+ xn−j − xn−k
, (4.25)

with initial conditions x0 > x−1 > · · · > x−k where a, b > 0, k ≥ 1 and

0 ≤ j ≤ k − 1.

Eq.(4.25) is AH1, so we can reduce its order by one to have the following

equation of order k

rn+1 =
b

a+ rn−k+1 + rn−k+2 + · · ·+ rn−j
, (4.26)

since we substitue 0 −→ xn and rn−k+1 +rn−k+2 + · · ·+rn−j −→ xn−j−xn−k,

because

xn−j = −rn−j+1 − rn−j+2 − · · · − rn−1 − rn,

and note that the number of terms in xn−j is j.

And since 0 ≤ j ≤ k − 1,

xn−k = −rn−k+1 − rn−k+2 − · · · − rn−j − rn−j+1 − · · · − rn−1 − rn,

and note the the number of terms in xn−k is k.

Therefore,

xn−j − xn−k = rn−k+1 + rn−k+2 + · · ·+ rn−j,

with k − j terms.

Also since rn = xn−xn−1 and according to the inital conditions of Eq.(4.25),

we have r0, r−1, · · · , r−k+1 > 0 as initial conditions of Eq.(4.26). This implies
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that rn > 0 for all n ≥ 1, so the corresponding solution of Eq.(4.25) is

increasing and eventually positive since by

xn = x0 +
n∑
i=1

ri,

We can transform Eq.(4.26) to a more familiar equation by substituting tn =
b

rn
we have

b

rn+1

= a+ rn−j + rn−j−1 + · · ·+ rn−k+1,

tn+1 = a+
b

tn−j
+

b

tn−j−1
+

b

tn−k+1

,

= a+ b
k−1∑
i=j

1

tn−i
.



5

ON LIE SYMMETRIES AND

DYNAMICS FOR HOMOGENEUOUS

DIFFERENCE EQUATIONS

In this chapter, we will review an Euler’s theorem for multiplicative homo-

geneuous functions and a lemma for additive homogeneuous functions. We

try to find the characteristic function Q(n, xn) for some difference equations

using Lie symmetry method. Then, we present two theorems that gives the

characteristic function Q(n, xn) directly for MH1 and AH1 respectively. We

do that by using Lie symmetry method and order reduction theorem. Finally,

we will review stability to study convergence for MH1 of second order.

5.1 Euler’s Theorem For Homogeneuous Functions

In this section, we present another way to check if a given function is homo-

geneuous of degree k rather than the definition.



5.1. Euler’s Theorem For Homogeneuous Functions 53

Theorem 5.1. [9] Let f : Rn
+ → R be continuous, and differentiable on Rn

++.

Then f is MHk iff for all x ∈ Rn
++,

kf(x) =
n∑
i=1

∂f(x)

∂xi
xi. (5.1)

Proof. Suppose f is homogeneuous of degree k. Fix x ∈ Rn
++, and define the

function g : [0,∞) −→ R (depending on x) by

g(t) = f(tx)− tkf(x),

and note that for all t ≥ 0,

g(t) = 0.

Therefore, for all t > 0,

g′(t) = 0.

But by the chain rule, since x ∈ Rn
++,

g′(t) =
n∑
i=1

∂f(tx)

∂xi
xi − ktk−1f(x) = 0,

evaluate g′(t) at t = 1 to obtain Eq.(5.1).

Conversely, suppose

kf(x) =
n∑
i=1

∂f(x)

∂xi
xi.

for all x ∈ Rn
++. Fix any x� 0 and again define g : [0,∞) −→ R (depending

on x) by

g(t) = f(tx)− tkf(x),

(need to show g is identically zero) and note that g(1) = 0. Then ∀t > 0,

g′(t) =
n∑
i=1

∂f(tx)

∂xi
xi − ktk−1f(x)

= t−1

(
n∑
i=1

∂f(tx)

∂xi
txi

)
− ktk−1f(x)

= t−1kf(tx)− ktk−1f(x).
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So,

tg′(t) = k(f(tx)− tkf(x))

= kg(t).

Since t is an arbitrary constant, g satisfies the following differential equation

with an inital condition g(1) = 0.

g′(t)− k

t
g(t) = 0.

We can solve it easily by separation of variables as follows:

dg(t)

g(t)
= k

dt

t
,

integrating both sides, we get

ln g(t) = k ln t+ c = ln tk + c, t > 0.

Now apply the natural exponential to have

g(t) = Ctk,

where C is an arbitrary constant, by using the initial condition we have

C = 0. Therefore, g is identically zero, so f is homogeneuous of order k on

Rn
++. Continuity gurantees that f is homogeneuous on Rn

++.

Lemma 5.2. Let f : D ⊂ Rk
+ → R be a class C1, then f is AH1 iff

k∑
i=1

∂f

∂xi
(x1, x2, . . . , xk) = 1. (5.2)

Proof. Assume that f is AH1; that is, ∀t ∈ R and (x1, x2, . . . , xk) ∈ D,

f(t+ x1, t+ x2, . . . , t+ xk) = t+ f(x1, x2, . . . , xk).
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Differentiating both sides with respect to t as follows,

∂f

∂(t+ x1)

∂(t+ x1)

∂t
+

∂f

∂(t+ x2)

∂(t+ x2)

∂t
+· · ·+ ∂f

∂(t+ xk)

∂(t+ xk)

∂t
= 1+0 = 1.

Clearly, ∂(t+xi)
∂t

= 1, ∀i = 1, . . . , k and substitute t = 0 we get,

∂f

∂x1
+
∂f

∂x2
+ · · ·+ ∂f

∂xk
=

k∑
i=1

∂f

∂xi
= 1.

Conversely, suppose that Eq.(5.2) holds. For all x ∈ D, define

φ(t) = f(t+ x1, t+ x2, . . . , t+ xk)− t− f(x1, x2, . . . , xk)

we need to show φ(t) = 0,∀t ∈ R. Clearly φ(0) = 0, and

φ′(t) =
k∑
i=1

∂f

∂(t+ xi)
(t+ x1, t+ x2, . . . , t+ xk)− 1

and by Eq.(5.2) for all (t+ x1, t+ x2, . . . , t+ xk) ∈ D,

φ′(t) = 0.

Therefore, φ(t) = c and since φ(0) = 0, we have c = 0 and hence

φ(t) = 0, ∀t ∈ R.

The proof is complete.

5.2 Characteristic Function For Some Difference Equations

Using Lie Symmetry

In this section, we try to find a characteristic function Q for some difference

equations with different orders by following steps in Lie symmetry method.
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5.2.1 The Characteristic Function for the difference 2nd O∆E

xn+1 =
x2n+x

2
n−1

xn+xn−1

In this section, we need to find the characteristic function for the second

order difference equation that is MH1,

xn+1 =
x2n + x2n−1
xn + xn−1

= f(xn, xn−1). (5.3)

To find Q(n, xn), we write the LSC for Eq.(5.3), as follows

Q(n+ 1, f)− ∂f

∂xn
Q(n, xn)− ∂f

∂xn−1
Q(n− 1, xn−1) = 0, (5.4)

but,
∂f

∂xn
=

2xn − f
xn + xn−1

,

∂f

∂xn−1
=

2xn−1 − f
xn + xn−1

,

and
∂xn−1
∂xn

= − ∂f/∂xn
∂f/∂xn−1

= − 2xn − f
2xn−1 − f

,

Then Eq.(5.4) becomes

Q(n+ 1, f)− 2xn − f
xn + xn−1

Q(n, xn)− 2xn−1 − f
xn + xn−1

Q(n− 1, xn−1) = 0, (5.5)

apply the differential operator L to Eq.(5.5), where L is defined by

L =
∂

∂xn
+
∂xn−1
∂xn

∂

∂xn−1
=

∂

∂xn
−

(
2xn − f

2xn−1 − f

)
∂

∂xn−1
,

∂

∂xn

(
Q(n+ 1, f)− 2xn − f

xn + xn−1
Q(n, xn)− 2xn−1 − f

xn + xn−1
Q(n− 1, xn−1)

)

−

(
2xn − f

2xn−1 − f

)
∂

∂xn−1

(
Q(n+ 1, f)− 2xn − f

xn + xn−1
Q(n, xn)

− 2xn−1 − f
xn + xn−1

Q(n− 1, xn−1)

)
= 0, (5.6)
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but,

∂

∂xn
(Q(n+ 1, f)) = 0,

∂

∂xn

(
2xn − f
xn + xn−1

Q(n, xn)

)
=

2xn − f
xn + xn−1

Q′(n, xn) +
2xn−1 + f

(xn + xn−1)2
Q(n, xn),

∂

∂xn

(
2xn−1 − f
xn + xn−1

Q(n− 1, xn−1)

)
= − 2xn−1 − f

(xn + xn−1)2
Q(n− 1, xn−1),

and

∂

∂xn−1
(Q(n+ 1, f)) = 0,

∂

∂xn−1

(
2xn − f
xn + xn−1

Q(n, xn)

)
= − 2xn − f

(xn + xn−1)2
Q(n, xn),

∂

∂xn−1

(
2xn−1 − f
xn + xn−1

Q(n− 1, xn−1)

)
=

2xn−1 − f
xn + xn−1

Q′(n− 1, xn−1) +
2xn + f

(xn + xn−1)2
Q(n− 1, xn−1).

This leads Eq.(5.6) to

− 2xn − f
xn + xn−1

Q′(n, xn)− 2xn−1 + f

(xn + xn−1)2
Q(n, xn)+

2xn−1 − f
(xn + xn−1)2

Q(n−1, xn−1)−

(
2xn − f

2xn−1 − f

)
(

2xn − f
(xn + xn−1)2

Q(n, xn))−2xn−1 − f
xn + xn−1

Q′(n−1, xn−1)−
2xn + f

(xn + xn−1)2
Q(n−1, xn−1)

)
= 0.

(5.7)

Rearranging and gathering similar terms, we get

2xn − f
xn + xn−1

Q′(n, xn) +
4x2n + 4x2n−1 − 4fxn

(2xn−1 − f)(xn + xn−1)2
Q(n, xn)+

4fxn−1 − 4x2n − 4x2n−1
(2xn−1 − f)(xn + xn−1)2

Q(n− 1, xn−1)−
2xn − f
xn + xn−1

Q′(n− 1, xn−1) = 0,

(5.8)



5.2. Characteristic Function For Some Difference Equations Using Lie
Symmetry 58

multiply Eq.(5.8) by (2xn−1 − f)(xn + xn−1)
2, we get

(2xn−f)(2xn−1−f)(xn+xn−1)Q
′(n, xn) + (4x2n+ 4x2n−1−4fxn)Q(n, xn)+

(4fxn−1−4x2n−4x2n−1)Q(n−1, xn−1)−(2xn−f)(2xn−1−f)(xn+xn−1)Q
′(n−1, xn−1) = 0,

(5.9)

differentiate Eq.(5.9) with respect to xn yields

(2xn−f)(2xn−1−f)(xn+xn−1)Q
′′(n, xn)+((2xn−1−f)(4xn+2xn−1−f)+

4(x2n + x2n−1 − fxn))Q′(n, xn) + 4(2xn − f)Q(n, xn)− 8xnQ(n− 1, xn−1)

− ((2xn−1 − f)(4xn + 2xn−1 − f))Q′(n− 1, xn−1) = 0, (5.10)

differentiate Eq.(5.10) with respect to xn,

(2xn−f)(2xn−1−f)(xn+xn−1)Q
′′′(n, xn)+((2xn−1−f)(4xn+2xn−1−f)+

4(x2n + x2n−1 − fxn))Q′′(n, xn) + (16xn + 8xn−1 − 12f)Q′(n, xn) + 8Q(n, xn)

− 8Q(n− 1, xn−1)− 4(2xn−1 − f)Q′(n− 1, xn−1) = 0, (5.11)

differentiate Eq.(5.11) with respect to xn,

(2xn−f)(2xn−1−f)(xn+xn−1)Q
(4)(n, xn)+((2xn−1−f)(4xn+2xn−1−f)+

4(x2n+x2n−1−fxn))Q′′′(n, xn)+(24xn+16xn−1−20f)Q′′(n, xn)+24Q′(n, xn) = 0,

(5.12)

differentiate Eq.(5.12) with respect to xn,

(2xn−f)(2xn−1−f)(xn+xn−1)Q
(5)(n, xn)+((2xn−1−f)(4xn+2xn−1−f)+

4(x2n+x2n−1−fxn))Q(4)(n, xn)+(32xn+24xn−1−28f)Q′′′(n, xn)+48Q′′(n, xn) = 0,

(5.13)

If we assume Q(n, xn) = cxn of Eq.(5.13) where c is a constant, then the

characteristic of Eq.(5.3) is Q(n, xn) = cxn.
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5.2.2 The Characteristic Function for the 3rd order difference equation

xn+1 = xn + a(xn−xn−1)2

xn−1−xn−2

In this section, we need to find the characteristic function Q(n, xn), for MH1

and AH1 difference equation of order 3,

xn+1 = xn +
a(xn − xn−1)2

xn−1 − xn−2
= f(xn, xn−1, xn−2); (5.14)

To find Q(n, xn), we write LSC for Eq.(5.14), as follows :

Q(n+1, f)− ∂f

∂xn
Q(n, xn)− ∂f

∂xn−1
Q(n−1, xn−1)−

∂f

∂xn−2
Q(n−2, xn−2) = 0,

(5.15)

but,

∂f

∂xn
= 1 +

2a(xn − xn−1)
xn−1 − xn−2

= 1 +
2(f − xn)

xn − xn−1
=

2f − xn−1 − xn
xn − xn−1

,

∂f

∂xn−1
= (f − xn)

(
2

xn−1 − xn
+

1

xn−2 − xn−1

)
,

and
∂f

∂xn−2
=

a(xn − xn−1)2

(xn−1 − xn−2)2
=

f − xn
xn−1 − xn−2

.

so the LSC is

Q(n+1, f)+
2f − xn−1 − xn
xn−1 − xn

Q(n, xn)−(f−xn)

(
2

xn−1 − xn
+

1

xn−2 − xn−1

)
Q(n− 1, xn−1) +

f − xn
xn−2 − xn−1

Q(n− 2, xn−2) = 0, (5.16)

Now, we apply the differential operator L, given by

L =
∂

∂xn
+
∂xn−2
∂xn

∂

∂xn−2
,

but,

∂xn−2
∂xn

= − ∂f/∂xn
∂f/∂xn−2

= −

(
1 + 2(f−xn)

xn−xn−1

f−xn
xn−1−xn−2

)
=

(xn−2 − xn−1)(2f − xn − xn−1)
(f − xn)(xn − xn−1)

,
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Now, we apply the differential operator L to Eq.(5.16) to get

∂

∂xn

(
Q(n+1, f)+

2f − xn−1 − xn
xn−1 − xn

Q(n, xn)−(f−xn)

(
2

xn−1 − xn
+

1

xn−2 − xn−1

)

Q(n−1, xn−1)+
f − xn

xn−2 − xn−1
Q(n−2, xn−2)

)
+

(
(xn−2 − xn−1)(2f − xn − xn−1)

(f − xn)(xn − xn−1)

)
∂

∂xn−2

(
Q(n+1, f)+

2f − xn−1 − xn
xn−1 − xn

Q(n, xn)−(f−xn)

(
2

xn−1 − xn
+

1

xn−2 − xn−1

)
Q(n− 1, xn−1)+

f − xn
xn−2 − xn−1

Q(n− 2, xn−2)

)
= 0, (5.17)

but

∂

∂xn

(
Q(n+ 1, f)

)
= 0,

∂

∂xn

(
2f − xn−1 − xn
xn−1 − xn

Q(n, xn)

)
=

2f − xn−1 − xn
xn−1 − xn

Q′(n, xn) +
2(f − xn−1)
(xn−1 − xn)2

Q(n, xn),

∂

∂xn

(
f − xn

xn−2 − xn−1
Q(n− 2, xn−2)

)
= −Q(n− 2, xn−2)

xn−2 − xn−1
,

∂

∂xn

(
(f − xn)

(
2

xn−1 − xn
+

1

xn−2 − xn−1

)
Q(n− 1, xn−1)

)
=

2(f − xn−1)
(xn−1 − xn)2

Q(n− 1, xn−1)−
Q(n− 1, xn−1)

xn−2 − xn−1
,

and

∂

∂xn−2

(
Q(n+ 1, f)

)
= 0,

∂

∂xn−2

(
2f − xn−1 − xn
xn−1 − xn

Q(n, xn)

)
= 0,
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∂

∂xn−2

(
(f−xn)

(
2

xn−1 − xn
+

1

xn−2 − xn−1

)
Q(n−1, xn−1)

)
= − f − xn

(xn−2 − xn−1)2

Q(n− 1, xn−1),

∂

∂xn−2

(
f − xn

xn−2 − xn−1
Q(n−2, xn−2)

)
=

f − xn
xn−2 − xn−1

Q′(n−2, xn−2)−
f − xn

(xn−2 − xn−1)2

Q(n− 2, xn−2),

Substitute the above partial derivatives in Eq.(5.17) and rearrange the result

to have

2f − xn−1 − xn
xn−1 − xn

Q′(n, xn) +
2(f − xn−1)
(xn − xn−1)2

Q(n, xn)

+
2(xn−1 − f)(xn−2 − xn−1)2 + (xn−1 − xn)2(f + xn−2 − xn − xn−1)

(xn−1 − xn)2(xn−2 − xn−1)2
Q(n−1, xn−1)

+
2(xn−1 − f)

(xn − xn−1)(xn−2 − xn−1)
Q(n−2, xn−2)+

2f − xn−1 − xn
xn − xn−1

Q′(n−2, xn−2) = 0,

(5.18)

multiply Eq.(5.18) by (xn − xn−1)
2, and then differentiate the result with

respect to xn, we get

(xn−1 − xn)(2f − xn−1 − xn)Q′′(n, xn) + 2(xn − xn−1)Q′(n, xn)

− (xn−1 − xn)(2f + 2xn−2 − 3xn − xn−1)
(xn−2 − xn−1)2

Q(n− 1, xn−1)

+
2(xn−1 − f)

xn−2 − xn−1
Q(n− 2, xn−2) + 2(f − xn)Q′(n− 2, xn−2) = 0, (5.19)

differentiate Eq.(5.19) with respect to xn and rearrange the result to have

(xn−1−xn)(2f−xn−1−xn)Q(3)(n, xn)−2(f−2xn+xn−1)Q
′′(n, xn)+2Q′(n, xn)

+
2f + 2xn−2 − 6xn + 2xn−1

(xn−2 − xn−1)2
Q(n− 1, xn−1)− 2Q′(n− 2, xn−2) = 0, (5.20)

another time, differentiate Eq.(5.20) with respect to xn and rearrange the
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result to have

(xn−1−xn)(2f−xn−1−xn)Q(4)(n, xn)−2(2f−3xn+xn−1)Q
(3)(n, xn)+6Q′′(n, xn)

− 6

(xn−2 − xn−1)2
Q(n− 1, xn−1) = 0, (5.21)

differentiate Eq.(5.21) with respect to xn and rearrange the result to have

(xn−1 − xn)(2f − xn−1 − xn)Q(5)(n, xn)− 2(3f − 4xn + xn−1)Q
(4)(n, xn)

+ 12Q(3)(n, xn) = 0. (5.22)

If we assume Q(n, xn) = cxn or Q(n, xn) = c, then they are solutions of

Eq.(5.22).

Therefore the characteristic function of Eq.(5.14) isQ(n, xn) = cxn orQ(n, xn) =

c, where c is a constant.

5.2.3 The Characteristic Function for the 4th order difference equation

xn+1 = xn + a(xn−xn−1)2

xn−2−xn−3

In this section, we need to find the characteristic function Q(n, xn), for MH1

and AH1 difference equation of order 4,

xn+1 = xn +
a(xn − xn−1)2

xn−2 − xn−3
= f(xn, xn−1, xn−2, xn−3); (5.23)

To find Q(n, xn), we write LSC for Eq.(5.23), as follows

Q(n+ 1, f)− ∂f

∂xn
Q(n, xn)− ∂f

∂xn−1
Q(n− 1, xn−1)−

∂f

∂xn−2
Q(n− 2, xn−2)

− ∂f

∂xn−3
Q(n− 3, xn−3) = 0, (5.24)

but
∂f

∂xn
= 1 +

2a(xn − xn−1)
xn−2 − xn−3

= 1 +
2(f − xn)

xn − xn−1
,
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∂f

∂xn−1
=
−2a(xn − xn−1)
xn−2 − xn−3

=
−2(f − xn)

xn − xn−1
,

∂f

∂xn−2
=
−a(xn − xn−1)2

(xn−2 − xn−3)2
=
−(f − xn)

xn−2 − xn−3
,

and
∂f

∂xn−3
=

a(xn − xn−1)2

(xn−2 − xn−3)2
=

f − xn
xn−2 − xn−3

.

So the LSC is

Q(n+ 1, f)−

(
1 +

2(f − xn)

xn − xn−1

)
Q(n, xn) +

2(f − xn)

xn − xn−1
Q(n− 1, xn−1)

+
f − xn

xn−2 − xn−3
Q(n− 2, xn−2)−

f − xn
xn−2 − xn−3

Q(n− 3, xn−3) = 0. (5.25)

Now, we apply the differential operator L, given by

L =
∂

∂xn
+
∂xn−1
∂xn

∂

∂xn−1
,

but,

∂xn−1
∂xn

= − ∂f/∂xn
∂f/∂xn−1

= −

(
1 + 2(f−xn)

xn−xn−1

−2(f−xn)
xn−xn−1

)
=

2f − xn − xn−1
2(f − xn)

.

Now, we apply the differential operator L to Eq.(5.25) to get

∂

∂xn

(
Q(n+ 1, f)−

(
1 +

2(f − xn)

xn − xn−1

)
Q(n, xn) +

2(f − xn)

xn − xn−1
Q(n− 1, xn−1)

+
f − xn

xn−2 − xn−3
Q(n−2, xn−2)−

f − xn
xn−2 − xn−3

Q(n−3, xn−3)

)
+

(
2f − xn − xn−1

2(f − xn)

)
∂

∂xn−1

(
Q(n+ 1, f)−

(
1 +

2(f − xn)

xn − xn−1

)
Q(n, xn) +

2(f − xn)

xn − xn−1
Q(n− 1, xn−1)

+
f − xn

xn−2 − xn−3
Q(n− 2, xn−2)−

f − xn
xn−2 − xn−3

Q(n− 3, xn−3)

)
= 0, (5.26)
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but

∂

∂xn
(Q(n+ 1, f)) = 0,

∂

∂xn

((
1 +

2(f − xn)

xn − xn−1

)
Q(n, xn)

)
=

2f − xn − xn−1
xn − xn−1

Q′(n, xn) +
2(xn−1 − f)

(xn − xn−1)2
Q(n, xn),

∂

∂xn

(
2(f − xn)

xn − xn−1
Q(n− 1, xn−1)

)
=

2(xn−1 − f)

(xn − xn−1)2
Q(n− 1, xn−1),

∂

∂xn

(
f − xn

xn−2 − xn−3
Q(n− 2, xn−2)

)
=
−Q(n− 2, xn−2)

xn−2 − xn−3
,

∂

∂xn

(
f − xn

xn−2 − xn−3
Q(n− 3, xn−3)

)
=
−Q(n− 3, xn−3)

xn−2 − xn−3
,

and

∂

∂xn−1
(Q(n+ 1, f)) = 0,

∂

∂xn−1

((
1 +

2(f − xn)

xn − xn−1

)
Q(n, xn)

)
=

2(f − xn)

(xn − xn−1)2
Q(n, xn),

∂

∂xn−1

(
2(f − xn)

xn − xn−1
Q(n− 1, xn−1)

)
=

2(f − xn)

xn − xn−1
Q′(n− 1, xn−1) +

2(f − xn)

(xn − xn−1)2
Q(n− 1, xn−1),

∂

∂xn−1

(
f − xn

xn−2 − xn−3
Q(n− 2, xn−2)

)
= 0,

∂

∂xn−1

(
f − xn

xn−2 − xn−3
Q(n− 3, xn−3)

)
= 0.

Substitute the above partial derivatives in Eq.(5.26) to have

−2f − xn − xn−1
xn − xn−1

Q′(n, xn)− 2(xn−1 − f)

(xn − xn−1)2
Q(n, xn)+

2(xn−1 − f)

(xn − xn−1)2
Q(n−1, xn−1)

−Q(n− 2, xn−2)

xn−2 − xn−3
+
Q(n− 3, xn−3)

xn−2 − xn−3
+

(
2f − xn − xn−1

2(fn − xn)

)(
− 2(f − xn)

(xn − xn−1)2
Q(n, xn)

+
2(f − xn)

xn − xn−1
Q′(n− 1, xn−1) +

2(f − xn)

(xn − xn−1)2
Q(n− 1, xn−1)

)
= 0,
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which can be writen as

xn + xn−1 − 2f

xn − xn−1
Q′(n, xn)+

Q(n, xn)

xn − xn−1
+
Q(n− 1, xn−1)

xn−1 − xn
+
Q(n− 2, xn−2)

xn−3 − xn−2
+
Q(n− 3, xn−3)

xn−2 − xn−3

+
2f − xn − xn−1
xn − xn−1

Q′(n− 1, xn−1) = 0, (5.27)

we differentiate Eq.(5.27) with respect to xn to get

xn + xn−1 − 2f

xn − xn−1
Q′′(n, xn)+

2f + xn − 3xn−1
(xn − xn−1)2

Q′(n, xn)− Q(n, xn)

(xn − xn−1)2
+
Q(n− 1, xn−1)

(xn−1 − xn)2

+
2(xn−1 − f)

(xn − xn−1)2
Q′(n− 1, xn−1) = 0, (5.28)

multiply Eq.(5.28) by (xn − xn−1)2, we get

(x2n−x2n−1−2fxn+2fxn−1)Q
′′(n, xn)+(2f+xn−3xn−1)Q

′(n, xn)−Q(n, xn)+Q(n−1, xn−1)

+ 2(xn−1 − f)Q′(n− 1, xn−1) = 0, (5.29)

differentiate Eq.(5.29) with respect to xn, we get

(x2n− x2n−1− 2fxn + 2fxn−1)Q
′′′(n, xn) + 3(xn− xn−1)Q′′(n, xn) = 0, (5.30)

divide Eq.(5.30) over xn − xn−1 we get

(xn + xn−1 − 2f)Q′′′(n, xn) + 3Q′′(n, xn) = 0. (5.31)

If we assume Q(n, xn) = cxn or Q(n, xn) = c, then they are solutions of

Eq.(5.31).

Therefore, the characteristic function of Eq.(5.23) is Q(n, xn) = cxn or

Q(n, xn) = c, where c is a constant.

5.2.4 The Characteristic Function for the difference equation

xn+1 = xn−lxn−k

axn−k+bxn−l
of order k + 1

We need to find Q(n, xn) for the following MH1 difference equation of order

k + 1

xn+1 =
xn−lxn−k

axn−k + bxn−l
= f(xn, xn−1, . . . , xn−l, . . . , xn−k); (5.32)
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where k > l.

The LSC of Eq.(5.32) is

Q(n+1, f)− ∂f

∂xn
Q(n, xn)− ∂f

∂xn−1
Q(n−1, xn−1)−· · ·−

∂f

∂xn−l
Q(n−l, xn−l)−· · ·−

∂f

∂xn−k
Q(n− k, xn−k) = 0, (5.33)

but

∂f

∂xn−l
=

af 2

x2n−l
,

∂f

∂xn−k
=

bf 2

x2n−k
,

and
∂f

∂xn−i
= 0, ∀i 6= l, k.

Now, substitute the above partial derivatives in Eq.(5.33) we get

Q(n+ 1, f)− af 2

x2n−l
Q(n− l, xn−l)−

bf 2

x2n−k
Q(n− k, xn−k) = 0, (5.34)

applying the differential operator L to Eq.(5.34) such that

L =
∂

∂xn−l
+
∂xn−k
∂xn−l

∂

∂xn−k
,

but
∂xn−k
∂xn−l

= − ∂f/∂xn−l
∂f/∂xn−k

= −
ax2n−k
bx2n−l

,

we have

L =
∂

∂xn−l
−
ax2n−k
bx2n−l

∂

∂xn−k
.

We have

∂

∂xn−l

(
Q(n+ 1, f)− af 2

x2n−l
Q(n− l, xn−l)−

bf 2

x2n−k
Q(n− k, xn−k)

)

−
ax2n−k
bx2n−l

∂

∂xn−k

(
Q(n+1, f)− af 2

x2n−l
Q(n−l, xn−l)−

bf 2

x2n−k
Q(n−k, xn−k)

)
= 0,

(5.35)
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but

∂

∂xn−l

(
Q(n+ 1, f)

)
= 0,

∂

∂xn−l

(
af 2

x2n−l
Q(n− l, xn−l)

)
=

af 2

x2n−l
Q′(n− l, xn−l)−

2af 2

x3n−l
Q(n− l, xn−l),

∂

∂xn−l

(
bf 2

x2n−k
Q(n− k, xn−k)

)
= 0,

and

∂

∂xn−k

(
Q(n+ 1, f)

)
= 0,

∂

∂xn−k

(
af 2

x2n−l
Q(n− l, xn−l)

)
= 0,

∂

∂xn−k

(
bf 2

x2n−k
Q(n− k, xn−k)

)
=

bf 2

x2n−k
Q′(n− k, xn−k)−

2bf 2

x3n−k
Q(n− k, xn−k).

Substitute the above partial derivatives in Eq.(5.35) to get

−af 2

x2n−l
Q′(n−l, xn−l)+

2af 2

x3n−l
Q(n−l, xn−l)+

af 2

x2n−l
Q′(n−k, xn−k)−

2af 2

x2n−lxn−k
Q(n−k, xn−k) = 0,

(5.36)

multiply Eq.(5.36) by
−x2n−l

af2
we get

Q′(n−l, xn−l)−
2

xn−l
Q(n−l, xn−l)−Q′(n−k, xn−k)+

2

xn−k
Q(n−k, xn−k) = 0,

(5.37)

differentiate Eq.(5.37) with respect to xn−l to have

Q′′(n− l, xn−l)−
2

xn−l
Q′(n− l, xn−l) +

2

x2n−l
Q(n− l, xn−l) = 0, (5.38)

multiply Eq.(5.38) by x2n−l we get

x2n−lQ
′′(n− l, xn−l)− 2xn−lQ

′(n− l, xn−l) + 2Q(n− l, xn−l) = 0. (5.39)
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The above second order differential equation is Euler equation we solve it as

follows.

Assume the solution is

Q(n− l, xn−l) = xrn−l.

Then

Q′(n− l, xn−l) = rxr−1n−l

and

Q′′(n− l, xn−l) = r(r − 1)xr−2n−l .

Substitute Q,Q′ and Q′′ in Eq.(5.39), we get:

(r2 − r)xrn−l − 2rxrn−l + 2xrn−l = 0,

(r2 − 3r + 2)xrn−l = 0,

(r2 − 3r + 2) = 0,

we have r = 1 or r = 2. Then the characteristic solution of Eq.(5.32)is

Q(n− l, xn−l) = c1xn−l + c2x
2
n−l,

where c1 and c2 are constants.

5.2.5 The Characteristic Function of the difference equation

xn+1 = xnxn−k

axn−k+bxn−l
of order k + 1

We need to find Q(n, xn) for the following MH1 difference equation of order

k + 1

xn+1 =
xnxn−k

axn−k + bxn−l
= f(xn, xn−1, . . . , xn−l, . . . , xn−k); (5.40)
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where k > l The LSC of Eq.(5.40) is

Q(n+1, f)− ∂f

∂xn
Q(n, xn)− ∂f

∂xn−1
Q(n−1, xn−1)−· · ·−

∂f

∂xn−l
Q(n−l, xn−l)−· · ·−

∂f

∂xn−k
Q(n− k, xn−k) = 0, (5.41)

but
∂f

∂xn
=

f

xn

∂f

∂xn−l
=
−bf 2

xnxn−k
,

∂f

∂xn−k
=
bf 2xn−l
xnx2n−k

,

and
∂f

∂xn−i
= 0,∀i 6= 0, l, k.

Now, substitute the above partial derivatives in Eq.(5.41) we get

Q(n+1, f)− f

xn
Q(n, xn)+

bf 2

xnxn−k
Q(n−l, xn−l)−

bf 2xn−l
xnx2n−k

Q(n−k, xn−k) = 0,

(5.42)

applying the differential operator L to Eq.(5.42) such that

L =
∂

∂xn
+
∂xn−l
∂xn

∂

∂xn−l
=

∂

∂xn
+
xn−k
bf

∂

∂xn−l
,

such that
∂xn−l
∂xn

= − ∂f/∂xn
∂f/∂xn−l

=
xn−k
bf

.

we have

∂

∂xn

(
Q(n+1, f)− f

xn
Q(n, xn)+

bf 2

xnxn−k
Q(n−l, xn−l)−

bf 2xn−l
xnx2n−k

Q(n−k, xn−k)

)

+
xn−k
bf

∂

∂xn−l

(
Q(n+1, f)− f

xn
Q(n, xn)+

bf 2

xnxn−k
Q(n−l, xn−l)−

bf 2xn−l
xnx2n−k

Q(n−k, xn−k)

)
= 0,

(5.43)
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but

∂

∂xn

(
Q(n+ 1, f)

)
= 0,

∂

∂xn

(
f

xn
Q(n, xn)

)
=

f

xn
Q′(n, xn)− f

x2n
Q(n, xn),

∂

∂xn

(
bf 2

xnxn−k
Q(n− l, xn−l)

)
=
−bf 2

x2nxn−k
Q(n− l, xn−l),

∂

∂xn

(
bf 2xn−l
xnx2n−k

Q(n− k, xn−k)

)
=
−bf 2xn−l
x2nx

2
n−k

Q(n− k, xn−k),

and

∂

∂xn−l

(
Q(n+ 1, f)

)
= 0,

∂

∂xn−l

(
f

xn
Q(n, xn)

)
= 0,

∂

∂xn−l

(
bf 2

xnxn−k
Q(n− l, xn−l)

)
=

bf 2

xnxn−k
Q′(n− l, xn−l),

∂

∂xn−l

(
bf 2xn−l
xnx2n−k

Q(n− k, xn−k)

)
=

bf 2

xnx2n−k
Q(n− k, xn−k).

Substitute the above partial derivatives in Eq.(5.43) to get

−f
xn

Q′(n, xn) +
f

x2n
Q(n, xn)− bf 2

x2nxn−k
Q(n− l, xn−l) +

f

xn
Q′(n− l, xn−l)+

f(bfxn−l − xnxn−k)
x2nx

2
n−k

Q(n− k, xn−k) = 0, (5.44)

multiply Eq.(5.44) by −x
2
n

f
to get

xnQ
′(n, xn)−Q(n, xn) +

bf

xn−k
Q(n− l, xn−l)− xnQ′(n− l, xn−l)−

(bfxn−l − xnxn−k)
x2n−k

Q(n− k, xn−k) = 0, (5.45)
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differentiate Eq.(5.45) twice with respect to xn, we get

xnQ
′′′(n, xn) +Q′′(n, xn) = 0, (5.46)

If we assume Q(n, xn) = cxn, then Q(n, xn) = cxn or Q(n, xn) = c are solu-

tions of Eq.(5.46).

Therefore the characteristic function of Eq.(5.40) is Q(n, xn) = cxn, or

Q(n, xn) = c, where c is a constant.

5.3 On Lie Symmetries Of Homogeneous Difference Equations

In this section, we consier the difference equations of order k + 1

xn+1 = fn(xn, xn−1, xn−2, . . . , xn−k) s.t fn : Rk+1
+ → R. (5.47)

We present theorems that give explicit formulas for the characteristic function

Q in MH1 and AH1 cases. Then we solve Eq.(5.47) using Lie symmerty

method, and we reach to the same solution as order reduction theorem for

HD1.

5.3.1 On Lie Symmetries Of Multiplicative Homogeneous Difference

Equations

Theorem 5.3. If the difference equation Eq.(5.47) is MH1, then a charac-

teristic function of the Lie symmetry is

Q(n, xn) = xn.

Proof. Let fn be MH1 for all n. Euler’s formula for MH1 implies that

∂fn
∂xn

xn +
∂fn
∂xn−1

xn−1 + · · ·+ ∂fn
∂xn−k

xn−k = fn(xn, xn−1, . . . , xn−k),
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but fn(xn, xn−1, . . . , xn−k) = xn+1 = Q(n+ 1, xn+1).

This completes the proof.

Now, to solve Eq.(5.47) using Lie symmetry. Firstly, we find the invariant,

by solving
dxn
xn

=
dxn−1
xn−1

= · · · = dxn−k
xn−k

=
dvn
0
,

taking the ith and jth invariants for any i, j = n− k, . . . , n, we solve

dxi
xi

=
dxj
xj

,

we get

lnxi = lnxj + cij,

which gives
xi
xj

= kij,

for some constant kij ∈ R. And then we solve for i = n− k, . . . , n,

dxi
xi

=
dv

0
,

∫
dv =

∫
0,

v = constant = ψ(kn,n−1, . . . , kn,n−k, kn−1,n, kn−1,n−2, . . . , kn−1,n−k, . . . , kn−k,n−k+1),

take ψ(kn,n−1, . . . , kn,n−k, kn−1,n, kn−1,n−2, . . . , kn−1,n−k, . . . , kn−k,n−k+1) = kn,n−1,

this gives

vn = kn,n−1 =
xn
xn−1

,
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and this invariant satisfies Ivn = 0, where

Ivn =
k∑
i=0

Q(n− i, xn−i)
∂vn
∂xn−i

,

and hence

Ivn = Q(n, xn)
∂( xn

xn−1
)

∂xn
+Q(n− 1, xn−1)

∂( xn
xn−1

)

∂xn−1
+ · · ·+Q(n− k, xn−k)

∂( xn
xn−1

)

∂xn−k

= xn
1

xn−1
+ xn−1xn

−1

x2n−1
+ · · ·+ xn−k0

= 0.

Now we need to write Eq.(5.47) as an equation of vn, we use homogeneity of

fn to get
xn+1

xn
= fn(1,

xn−1
xn

,
xn−2
xn

, . . . ,
xn−k
xn

),

which can be written as

vn+1 = fn(1, v−1n , (vn−1vn)−1, . . . , (vn−k+1...vn−1vn)−1),

which is an equation of order k, we solve it for vn, after that we use the

equation xn = vnxn−1 to find the solution of the original equation.

The canonical coordinate in this case is given by

sn =

∫
dxn
xn

= lnxn.

It follows that

sn+1 − sn = ln(
xn+1

xn
) = ln vn+1,

which is a first order difference equation, whose solution is given by

sn = s0 +
n∑
i=1

ln vi,

therefore,

xn = esn = es0e
∑n

i=1 ln vi = x0

n∏
i=1

vi, n = 1, 2, 3, . . . .
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5.3.2 On Lie Symmetries Of Additive Homogeneuous Difference Equations

Theorem 5.4. If the difference equation Eq.(5.47) is AH1, then a charac-

teristic of the Lie group symmetry is

Q(n, xn) = c, c ∈ R.

Proof. Let fn be AH1 for all n, Euler’s formula for AH1 implies that

∂fn
∂xn

+
∂fn
∂xn−1

+ · · ·+ ∂fn
∂xn−k

= 1,

and LSC implies that

Q(n+1, xn+1) =
∂fn
∂xn

Q(n, xn)+
∂fn
∂xn−1

Q(n−1, xn−1)+· · ·+
∂fn
∂xn−k

Q(n−k, xn−k),

if we compare the above two equations, we find that

Q(n, xn) = c,

where c is a constant.

Now, to solve Eq.(5.47) using Lie symmetry , an invariant vn can be found

by using
dxn
c

=
dxn−1
c

= · · · = dxn−k
c

=
dv

0
,

taking the ith and jth invariants for any i, j = n− k, · · · , n.

We solve,

dxi = dxj,

we get

xi = xj + kij, kij ∈ R.

And then we solve for i = n− k, · · · , n,

dxi
c

=
dv

0
,
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∫
dv =

∫
0,

Then, the invarient

v = constant = ψ(kn,n−1, · · · , kn,n−k, kn−1,n, kn−1,n−2, · · · , kn−1,n−k, · · · , kn−k,n−k+1),

take ψ(kn,n−1, · · · , kn,n−k, · · · , kn−1,n−2, · · · , kn−1,n−k, · · · , kn−k,n−k+1) = kn,n−1,

this gives

vn = xn − xn−1.

Also this invarient satisfies

Ivn = 0,

since

Ivn = Q(n, xn)
∂(xn − xn−1)

∂xn
+Q(n− 1, xn−1)

∂(xn − xn−1)
∂xn−1

+ · · ·

+Q(n− k, xn−k)
∂(xn − xn−1)

∂xn−k
= c(1) + c(−1) + · · ·+ c(0)

= 0.

The canonical coordinate in this case is given by

sn =

∫
dxn
c

=
xn
c

+ c1, c, c1 ∈ R,

and we choose a canonical coordinate sn = xn, and take vn = xn − xn−1. It

follows that

sn+1 − sn = xn+1 − xn = vn+1 = fn(xn, xn−1, xn−2, . . . , xn−k)− xn,
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since ∀n, fn is AH1,

vn+1 = fn(xn − xn, xn−1 − xn, xn−2 − xn, . . . , xn−k − xn)

= fn(0,−(xn − xn−1),−(xn−1 − xn−2)− (xn − xn−1), . . . ,−(xn−k+1 − xn−k)

− · · · − (xn − xn−1))

= fn(0,−vn,−vn−1 − vn, . . . ,−vn−k+1 − · · · − vn−1 − vn). (5.48)

Equation (5.48) is of order k, we solve it for vn, to find the solution of the

original equation (5.47). We use the canonical coordinate sn = xn, and

sn+1 = sn + vn+1,

which is a first order difference equation, whose solution is given by

sn = s0 +
n∑
i=1

vi,

therefore,

xn = x0 +
n∑
i=1

vi, n = 1, 2, 3, . . . .

5.4 Introduction To Stability

In this section, we review some relations and results which will be useful in

our investigation.

Definition 5.5. [3] Let I be some interval of real numbers and let

f : Ik+1 → I

be a continuously differentiable function. Then for every set of inital condi-

tions x−k, x−k+1, . . . , x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . (5.49)

has a unique solution {xn}∞n=−k.
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Definition 5.6. [3] A point x̄ ∈ I is called an equilibrium point of the

Eq.(5.49) if

x̄ = f(x̄, x̄, . . . , x̄).

That is, xn = x̄ for n = 0, 1, . . . , is a solution of Eq.(5.49), or equivalently,

x̄ is fixed point of f .

Definition 5.7. (Stability)[3]

• The equilibrium point x̄ of Eq.(5.49) is locally stable if for ε > 0, there

exists δ > 0 such that for all x−k, x−k+1, . . . , x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ · · ·+ |x0 − x̄| < δ,

we have

|xn − x̄| < ε, ∀n ≥ −k.

• The equilibrium point x̄ of Eq.(5.49) is locally asymptotically stable if

x̄ is locally stable of Eq.(5.49) and there exists γ > 0, such that for all

x−k, x−k+1, . . . , x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ · · ·+ |x0 − x̄| < γ,

we have

lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq.(5.49) is global attractor if for all x−k, x−k+1, . . . , x0 ∈

I, we have

lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq.(5.49) is globally asymptotically stable if

x̄ is locally stable, and x̄ is also global attractor of Eq.(5.49).
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• The equilibrium point x̄ of Eq.(5.49) is unstable if x̄ is not locally stable.

Definition 5.8. [3] The linearized equation of Eq.(5.49) about the equilib-

rium point x̄ is the linear difference equation

yn+1 =
k∑
i=0

∂f(x̄, x̄, . . . , x̄)

∂xn−i
yn−i.

Theorem 5.9. (Linearized Stability)[3] Assume that pi ∈ R, i = 1, 2, . . .

and k = {0, 1, . . . }. Then
k∑
i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + · · ·+ pkxn = 0, n = 0, 1, . . .

5.5 Multiplicative Homogeneous Equations of Second Order

Let

xn+1 = f(xn, xn−1), n = 0, 1, . . . (5.50)

be a second order MH1. Therefore, this equation is equivalent to

rn+1 = f(1, r−1n ). (5.51)

It is convenient in what follows to define the mapping

g(r) = f(1, r−1),

so that Eq.(5.51) can be written as rn+1 = g(rn). Here, we focus on positive

solutions. Let f be a positive function, and assume that the continuous map

g : (0,∞)→ (0,∞) has a unique fixed point r̄, so that r̄ is an equilibrium of

Eq.(5.51). Then the ray {(x, r̄x) : x ∈ (0,∞)} or r̄x for short is an invariant
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set of Eq.(5.50) in the state−space (0,∞)2. Since if (x−1, x0) is a point on

this ray so that x0 = r̄x−1, then r0 = r̄ and thus r1 = r̄, since

r1 = g(r0) = g(r̄) = r̄,

therefore, x1 = r̄x0; i.e.(x0, x1) is on r̄x. By induction, the state−space orbit

(xn−1, xn) is on the invariant ray for all n.

So we have

xn = rnxn−1 = rnrn−1xn−2 = · · · = rnrn−1 . . . r1x0,

and thus

xn = (r̄)nx0.

We have three cases according to the value of r̄,

• If r̄ < 1, then every orbit of Eq.(5.50) starting on r̄x will converge

monotonically to 0 on r̄x.

• If r̄ = 1, then every orbit in r̄x is stationary (a point).

• If r̄ > 1, then every orbit of Eq.(5.50) starting on r̄x will goes to ∞

monotonically.

We see that the invariant ray r̄x is analogous to a fixed point for Eq.(5.50),

in the sense that by taking the quotient of (0,∞)2 modulo r̄x, Eq.(5.50) is

transformed into a topological conjugate of Eq.(5.51), and the ray r̄x into

the point r̄; on the space of rays through the origion. We conclude to,

Theorem 5.10. [9](Solutions on the invariant ray)

• If r̄ < 1, then the solutions of Eq.(5.51) on the invariant ray r̄x con-

verger to 0 monotonically.
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• If r̄ = 1, then the solutions of Eq.(5.51) on the invariant ray r̄x are

stationary or contant solutions.

• If r̄ > 1, then the solutions of Eq.(5.51) on the invariant ray r̄x con-

verges to ∞ eventually monotonically.

Theorem 5.11. [9]

• Let 1 be globally attracting. Then,

– If r̄ < 1, then every positve solution of Eq.(5.50) converges to 0

eventually monotonically.

– If r̄ > 1, then every positve solution of Eq.(5.50) converges to ∞

eventually monotonically.

• Let for r > 0, g(r) < r. Then, every positve solution of Eq.(5.50)

converges to 0 eventually monotonically.

Lemma 5.12. [9] Let xn be a given sequence of real numbers. If there exists

a sequence yn of positive real numbers such that

| xn+1 − xn |≤ yn | xn − xn−1 |, n = 0, 1, · · · ,

and limn−→∞ yn = y < 1, then xn converges to a finite limit.

Theorem 5.13. [9] Let 1 be globally attracting for Eq.(5.51). If 0 <

(∂f/∂x)(1, 1) < 2, then every positive solution of Eq.(5.50) converges to

a finite limit.

Proof. 1 is globally attracting for Eq.(5.51), that is g has a fixed point at 1,

and limn−→∞ rn = xn
xn−1

= 1. Then, to use the above lemma we write

| xn+1−xn |=

∣∣∣∣∣f(xn, xn−1)− xn
xn − xn−1

∣∣∣∣∣ | xn−xn−1 |=
∣∣∣∣∣f( xn

xn−1
, 1)− xn

xn−1

xn
xn−1
− 1

∣∣∣∣∣ | xn−xn−1 | .
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Assume that

yn =

∣∣∣∣∣f( xn
xn−1

, 1)− xn
xn−1

xn
xn−1
− 1

∣∣∣∣∣,
Clearly, yn is positive, and we can find its limit by L’Hpspital’s rule.

lim
n−→∞

yn = lim
n−→∞

∣∣∣∣∣f( xn
xn−1

, 1)− xn
xn−1

xn
xn−1
− 1

∣∣∣∣∣ =
∣∣∣∂f
∂x

(1, 1)− 1
∣∣∣.

Now, ∣∣∣∂f
∂x

(1, 1)− 1
∣∣∣ < 1⇔ 0 <

∂f

∂x
(1, 1) < 2.

Therefore, by the above lemma xn conveges to a finite limit. The proof is

complete.

The following example, illustrates the above theorem.

Example 5.14. Let the MH1 of order two

xn+1 =
2xn−1xn
xn−1 + xn

, (5.52)

in example (3.22), we find its solution and is given by

xn =
1

ĉ1 + ĉ2(−2)−n
, (5.53)

where ĉ1 and ĉ2 ∈ R, are not both zero.

Now, the reduced equation of Eq.(5.52) is given by

rn+1 =
2

rn + 1
, (5.54)

which is a first order non-linear difference equation, its fixed point are 1 and

−2, we find them by solving the following equation

r̄ =
2

r̄ + 1
⇒ r̄2 + r̄ − 2 = 0⇒ (r̄ + 2)(r̄ − 1) = 0⇒ r̄ = 1,−2.

To prove that 1 is a global attractor of Eq.(5.54), we need to find its general

solution.
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Eq.(5.54) which is a type two of Ricatti Equation, that is a non-linear first

order difference equation that we can transform to a second order linear

difference equation as follows,

[12] Equations of general Riccati type 2:

xn+1 =
a(n)xn + b(n)

c(n)xn + d(n)
, (5.55)

where c(n) 6= 0, and a(n)d(n)− b(n)c(n) 6= 0 for all n ≥ 0.

To solve it, we let

c(n)xn + d(n) =
zn+1

zn
,

then we substitute

xn =
zn+1

c(n)zn
− d(n)

c(n)
,

into equation (5.55), we obtain(
zn+2

c(n+ 1)zn+1

− d(n+ 1)

c(n+ 1)

)(
zn+1

zn

)
= a(n)

(
zn+1

c(n)zn
− d(n)

c(n)

)
+ b(n).

Multiply this equation by c(n+ 1)zn, we get

zn+2−d(n+1)zn+1−a(n)
c(n+ 1)zn+1

c(n)
+

(
a(n)d(n)c(n+ 1)

c(n)
−b(n)c(n+1)

)
zn = 0,

which is equivalent to

zn+2−

(
d(n+1)−a(n)

c(n+ 1)

c(n)

)
zn+1+

(
a(n)d(n)c(n+ 1)

c(n)
−b(n)c(n+1)

)
zn = 0,

this equation is of the form

zn+2 + g1(n)zn+1 + g2(n)zn = 0,

which is linear difference equation. Now to solve Eq.(5.54), we note that

a(n) = 0, b(n) = 2, c(n) = d(n) = 1, therefore c(n) 6= 0 and a(n)d(n) −

b(n)c(n) = −2 6= 0,∀n ≥ 0. So we let

rn + 1 =
zn+1

zn
, (5.56)
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we obtain

zn+2 − zn+1 − 2zn = 0.

The characteristic equation is

rn+2 − rn+1 − 2rn = 0,

which implies that

r2 − r − 2 = 0,

so the characteristic roots are: r = 2 and r = −1 and the general solution is

zn = c12
n + c2(−1)n,

where c1 and c2 ∈ R, are not both zero. From (5.56) we have

rn =
c1(2)n+1 + c2(−1)n+1

c1(2)n + c2(−1)n
− 1

=
2c1(2)n − c2(−1)n

c1(2)n + c2(−1)n
− 1,

where c1 and c2 ∈ R, not both are zero. Taking the limit of the solution of

rn,

lim
n−→∞

rn = lim
n−→∞

2c1(2)n − c2(−1)n

c1(2)n + c2(−1)n
− 1,

divide the above limit by 2n, we have

lim
n−→∞

rn = lim
n−→∞

2c1 − c2(−12 )n

c1 + c2(
−1
2

)n
− 1 =

2c1 − 0

c1 + 0
− 1 = 2− 1 = 1.

We conclude that 1 is a global attractor of Eq.(5.54).

And 0 < (∂f/∂x)(1, 1) = 1
2
< 2. Therefore, by the above theorem every

positive solution of Eq.(5.52) converges to a finite limit. To see that, we find

the limit of the solution of Eq.(5.52) that is in (5.53) as follows:

lim
n−→∞

xn = lim
n−→∞

1

ĉ1 + ĉ2(−2)−n
=

1

ĉ1
.



6

ON DIFFERENCE EQUATION

XN+1 =
XNXN−K

AXN−K+BXN−L

In this chapter, we will study the dynamics of the MH1 difference equation

of order k + 1

xn+1 =
xnxn−k

axn−k + bxn−l
, (6.1)

we find that Eq.(6.1) has no fixed points if a + b 6= 1. Therefore, we take a

special case of Eq.(6.1) with a = b = 1 which becomes

xn+1 =
xnxn−k

xn−k + xn−l
. (6.2)

We find the exact solution of Eq(6.2) by using Theorem (5.3) and study its

global behaviour according to its solution. And we will study the local and

global behaviour of its reduced equation that is given by

rn+1 =
1

1 + rn−k+1

.

Finally, we will present Matlab for their solutions.
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6.1 Equilibrium Points Of The Difference equation

xn+1 = xnxn−k

axn−k+bxn−l

In this section, we find the condition on a and b in finding the equilibrium

points of the difference equation

xn+1 =
xnxn−k

axn−k + bxn−l
(6.3)

where the initial conditions x−k, x−k+1, . . . , x0, and a, b are arbitrary positive

real numbers. The equilibrium points of Eq.(6.3) are given by the relation

x̄ =
x̄2

ax̄+ bx̄
⇒ x̄2(a+ b) = x̄2 ⇒ x̄2(a+ b− 1) = 0,

If a + b 6= 1, then there is no positve equilibrium points of Eq.(6.3). And if

a+b = 1, then the equilibrium points of Eq.(6.3) are x̄ = (c, c, · · · , c), c ∈ R∗.

6.2 Exact Solution of the Difference Equation

xn+1 = xnxn−k

axn−k+bxn−l

In this section, we find the exact solution of the MH1 difference equation

xn+1 =
xnxn−k

axn−k + bxn−l
, (6.4)

of order k + 1, with k > l by order reduction method for HD1. Specifically

we choose k = l + 1; to find an explicit formula of the solution of equation

xn+1 =
xnxn−k

axn−k + bxn−l
,

with x−k, x−k+1, · · · , x0 initial values.Now, if we let l = k − 1 in Eq.(6.4) we

have

xn+1 =
xnxn−k

axn−k + bxn−k+1

= f(xn, · · · , xn−k+1, xn−k), (6.5)
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and the reduced equation is given by,

rn+1 = f(1, · · · , r−1n r−1n−1 · · · r−1n−k+2, r
−1
n r−1n−1 · · · r−1n−k+2r

−1
n−k+1)

=
1

a+ brn−k+1

, (6.6)

Eq.(6.6) can be written as

rn+k =
1

a+ brn
, (6.7)

which is an equation of order k that can be solved recursively. Let r0, r1, · · · , rk−1
be given and a = b = 1, then

n = 0, rk =
1

1 + r0
,

n = 1, rk+1 =
1

1 + r1
,

...

n = k − 1, r2k−1 =
1

1 + rk−1
,

n = k, r2k =
1

1 + rk
=

1 + r0
2 + r0

,

n = k + 1, r2k+1 =
1

1 + rk+1

=
1 + r1
2 + r1

,

...

n = 2k − 1, r3k−1 =
1

1 + r2k−1
=

1 + rk−1
2 + rk−1

,

n = 2k, r3k =
1

1 + r2k
=

2 + r0
3 + 2r0

,

n = 2k + 1, r3k+1 =
1

1 + r2k+1

=
2 + r1
3 + 2r1

,

...

n = 3k − 1, r4k−1 =
1

1 + r3k−1
=

2 + rk−1
3 + 2rk−1

,
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Let f(n) be the Fibonacci numbers which satisfy the recurrence relation

f(n) = f(n− 1) + f(n− 2); n ≥ 2,

where f(0) = 0 and f(1) = 1. This is a second order linear difference

equation whose general solution is given by

f(n) =

√
5

5

(
1 +
√

5

2

)n

−
√

5

5

(
1−
√

5

2

)n

. (6.8)

We note that

rk =
1 + 0r0
1 + 1r0

=
f(1) + f(0)r0
f(2) + f(1)r0

r2k =
1 + r0
2 + 1r0

=
f(2) + f(1)r0
f(3) + f(2)r0

r3k =
2 + 1r0
3 + 2r0

=
f(3) + f(2)r0
f(4) + f(3)r0

...

we conclude that the formula of the solution with respect to r0 is

rn = rmk =
f(m) + f(m− 1)r0
f(m+ 1) + f(m)r0

, m = 1, 2, 3, · · · (6.9)

and

rk+1 =
1 + 0r1
1 + 1r1

=
f(1) + f(0)r1
f(2) + f(1)r1

r2k+1 =
1 + r1
2 + 1r1

=
f(2) + f(1)r1
f(3) + f(2)r1

r3k+1 =
2 + 1r1
3 + 2r1

=
f(3) + f(1)r1
f(4) + f(3)r1

...

also we conclude the formula of the solution with respect to r1 is

rn = rmk+1 =
f(m) + f(m− 1)r1
f(m+ 1) + f(m)r1

, m = 1, 2, 3, · · · (6.10)
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and if we do the same iterations and calculations as above we will reach to

the last rk−1, and we conclude that

rn = rmk+k−1 =
f(m) + f(m− 1)rk−1
f(m+ 1) + f(m)rk−1

, m = 1, 2, 3, · · · . (6.11)

Therefore, the general solution of Eq.(6.6) is

rn = rmk+t =
f(m) + f(m− 1)rt
f(m+ 1) + f(m)rt

, m = 1, 2, 3, · · · ,∀t = 0, 1, · · · , k − 1.

(6.12)

We can write Eq.(6.12) as follows

rn =



f(m)+f(m−1)r0
f(m+1)+f(m)r0

;n = mk,m = 1, 2, 3, · · · .

f(m)+f(m−1)r1
f(m+1)+f(m)r1

;n = mk + 1,m = 1, 2, 3, · · · .

...

f(m)+f(m−1)rk−1

f(m+1)+f(m)rk−1
;n = mk + k − 1,m = 1, 2, 3, · · · .

Lemma 6.1. The general solution of the kth order difference equation

rn+k =
1

1 + rn

is given by

rn = rmk+t =
f(m) + f(m− 1)rt
f(m+ 1) + f(m)rt

where m = 1, 2, 3, · · · ∀t = 0, 1, · · · , k − 1.

Proof. By induction.

Firstly, it’s true for m = 1, ∀t = 0, 1, · · · , k − 1. Since

rn = rk+t =
f(1) + f(0)rt
f(2) + f(1)rt

=
1

1 + rt
.
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Suppose it’s true for m− 1, ∀t = 0, 1, · · · , k − 1,

r(m−1)k+t =
f(m− 1) + f(m− 2)rt
f(m) + f(m− 1)rt

.

Now, we need to prove it for m,

rmk+t =
1

1 + r(mk+t)−k
=

1

1 + r(m−1)k+t
,

we substitute r(m−1)k+t from our assumption to get,

rmk+t =
1

1 + f(m−1)+f(m−2)rt
f(m)+f(m−1)rt

=
f(m) + f(m− 1)rt

f(m) + f(m− 1) + (f(m− 1) + f(m− 2))rt
,

since f(m) = f(m− 1) + f(m− 2), we get

rmk+t =
f(m) + f(m− 1)rt
f(m+ 1) + f(m)rt

.

This proves our result.

Now, the general solution of Eq.(6.4) is given by

xn = x0

n∏
i=1

ri = x0

n∏
i=1

f(i) + f(i− 1)rt
f(i+ 1) + f(i)rt

, (6.13)

where x−k, x−k+1, · · · , x−1, x0 are positve initial points of Eq.(6.4) and rt =

xtx
−1
t−1, ∀t = 0, 1, 2, · · · , k − 1.

Theorem 6.2. The general solution of the k + 1 order difference equation

xn+1 =
xnxn−k

xn−k + xn−k+1

,

is given by

xn = x0

n∏
i=1

f(i) + f(i− 1)rt
f(i+ 1) + f(i)rt

,

where x−k, x−k+1, · · · , x−1, x0 are positve initial points of Eq.(6.4) and rt =

xtx
−1
t−1, ∀t = 0, 1, 2, · · · , k − 1.

Proof. The proof is following by order reduction theorem(4.5) and lemma(6.1).
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6.3 Local Stability of rn = 1
1+rn−k

In this section, we study the local stability character of the positive equilib-

rium point of the difference equation

rn =
1

1 + rn−k
, (6.14)

where the initial conditions r−k, r−k+1, · · · , r0 are arbitrary positive real num-

bers. The equilibrium points of Eq.(6.14) are given by the relation

r̄ =
1

1 + r̄
⇒ r̄2 + r̄ − 1 = 0⇒ r̄ =

−1±
√

5

2
,

the positive equlibrium is

r̄ =
−1 +

√
5

2
.

Let

g : (0,∞)→ (0,∞),

be a function defined by

g(u) =
1

1 + u
,

therefore,
dg

du
=

−1

(1 + u)2
.

Then we see that
dg

du

(
−1 +

√
5

2

)
=

−4

6 + 2
√

5
= γ.

Then the linearized equation of Eq.(6.14) about r̄ = −1+
√
5

2
is

yn + γyn−k = 0.

Since

γ = | −4

6 + 2
√

5
| < 1,

it follows from the linearized stability theorem (5.9) that the positive equi-

librium point of Eq(6.14) is locally asymptotically stable.
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Theorem 6.3. The positive equilibrium point of the difference equation

rn =
1

1 + rn−k
, (6.15)

is locally asymptotically stable.

6.4 Global stability of rn = 1
1+rn−k

In this section, we investigate the global behavior of the kth order difference

equation

rn =
1

1 + rn−k
, (6.16)

using the explicit formula of it’s solution.

Theorem 6.4. Let {rn}∞n=−k be a solution of Eq.(6.16). Then {rn}∞n=−k
converges to a finite limit.

Proof.

lim
n−→∞

rn = lim
m−→∞

rmk+t = lim
m−→∞

f(m) + f(m− 1)rt
f(m+ 1) + f(m)rt

,

dividing by f(m) we get

lim
n−→∞

rn = lim
m−→∞

1 + f(m−1)
f(m)

rt
f(m+1)
f(m)

+ rt
,

since f(n+1)
f(n)

conveges to α as n −→∞. Therefore,

lim
n−→∞

rn =
1

α
=

2

1 +
√

5
.
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6.5 Global Behavior of xn+1 = xnxn−k

xn−k+xn−l

In this section, we investigate the global behavior of

xn+1 =
xnxn−k

xn−k + xn−l
, (6.17)

using explicit formula of its solution.

Theorem 6.5. Let {xn}∞n=−k be a solution of Eq.(6.17). If the solution of

Eq.(6.16) {rn}∞n=−k+1 converges to 1
α

, then {xn}∞n=−k converges to 0.

Proof. Let the solution of Eq.(6.17) is

xn = x0

n∏
i=1

ri,

where x0 is an arbitrary positive real contant. From the previous theorem

we have, as n→∞, rn → 1
α
, and note that 1

α
< 1 since α = 1+

√
5

2
. It follows

that for a given 0 < 1
α
< ε < 1, there exists i0 ∈ N such that ri+1 < ε, ∀

i ≥ i0. Therfore,

xn = x0

n∏
i=1

ri

= x0

i0−1∏
i=1

ri

n∏
i=i0

ri

< x0

i0−1∏
i=1

riε
n−i0

as n→∞, xn → 0. Therfore, {xn}∞n=−k conerges to 0.

6.6 Matlab code for chapter six

The behavior of the solution of xn+1 = xnxn−3

xn−3+xn−2
.
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n=150;

x=zeros(n+1,1);

t=zeros(n+1,1);

x(1)=0.1; x(2)=1.1; x(3)=0.2; x(4)=1;

for i=4:n

t(i)=i-1;

x(i+1)=(x(i)*x(n-3))/(x(i-3)+x(i-2));

end

t(n+1)=n;

plot(t,x,t,x,’.’),xlabel(’n-iteration’),ylabel(’x(n)’)

axis([0 150 0 1.5])

The behavior of the solution of xn+1 = 1
1+xn−2

.
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n=70;

x=zeros(n+1,1);

t=zeros(n+1,1); x(1)=0.1 ; x(2)=1.1; x(3)=0.5;

for i=3:n

t(i)=i-1;

x(i+1)=(1) / (1+x(i-2));

end

t(n+1)=n;

plot(t,x,t,x,’.’),xlabel(’n-iteration’),ylabel(’x(n)’)

axis([0 70 0 10]), title(’Stabile fixed point’)



CONCLUSION

In this thesis we found that for a HD1 of order k + 1 the characteristic

function Q(n, xn) is xn and c for MH1 and AH1 respectively. And insted of

solvig them by Lie symmetry method, we can use reduction of order method

that reduces the order of HD1 by one, and its enough to solve the reduced

equation. Also, in Lie symmetry and reduction of order method we reached

to the same solution of the original equation that is of order k + 1.

We generlized the convergence of solutions of the original equation and its

reduced equation. We found that if the the solution of the reduced equation

converges to a finite limit. Then, its original equation converges to 0.



FUTURE WORK

It could be interesting to study another qualitative behaviour between the

original equation and its reduced equation as periodicity of their solutions.
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